Note: E 5 nowhere danse (=> XIE is danse in X.

Pf: E is nowhere dense ⇒ ∀x∈ X and any r>0, Br(X) ¢ E. ⇒ ∀x∈ X and any r>0, Br(X) ∩ (X \E) ≠ Ø ⇒ X \E is dense.

Ref: let (X, d) be a methic space. A point XEX is called an <u>isolated point</u> if {XS is open in X.

Note: As {x} is always closed in a metric space, {x's is both open and closed in X iff x is an isolated point.

eg: · I' has no isolated points. • All points in Z (subspace of IR) are esolated. (4n6Z, {n}=Bz(n) is open in Z)

G, dense => Br(x) n G1 = \$ \Rightarrow $\exists X_1 \in B_r(x) \cap G_1$ Since Br(X) NG, is open, = pro such that $B_{p}(x_{1}) \subset B_{r}(x) \cap G_{1}$ Now Gz dense => Bp(X1) (Gz ≠ Ø. $B_r(x) \cap G_1 \cap G_2 \neq \varphi$ This proves the claim and hence EIUEZ=X (GINGIZ) à nouseave dense By (a), EIUEz is also nowhere dense. Then introduction => ÜE; is nowhere dense provided E1,...Ek are nowhere dense.

(C) If (X,d) has no isolated point, then YXEX, {x} is nowhere dense in X.

eg

- · IN={1,2,3,...} countable and nowhere dense.
- · De comtable, but not nouhere deuse.

Examples in infinite dimensional numed spaces (Ref: "Elementary Real Analysis" by B. Thomson, J. Bruckner & A. Brucher) let M[a,b] = space of bounded functions on [a,b]. eg Then 11 fllos = sup[f(x)] is well-defined and is a norm on M[a,b]. clearly (CTarb], dos) is a metric (also vector) subspace of (M[a,b], do). Claim: Clab] à nowhere dense in MEa, 5] (with respect to do matric). (1) clearly, CTa, b] is closed (uniform limit of cts form īs ds) We only need to show that (z) $\forall B_{\varepsilon}^{\infty}(f) \subset M[a,b], B_{\varepsilon}^{\infty}(f) \cap (M[a,b] \setminus C[a,b]) \neq \phi$. (i) If fE M[a,b] (C[a,b], we are done. (ii) If $f \in C[a,b]$, $x \in [a, b] \cap \mathbb{Q}$ define $g(x) = \begin{cases} f(x) + \frac{5}{2}, \\ f(x) - \frac{5}{2}, \end{cases}$ xe [a,b] \Q.

Then
$$g(x) - f(x) = \pm \frac{e}{2}$$

 $\Rightarrow ||g - f||_{\infty} = \frac{e}{2}$
 $\therefore g \in B_{\mathcal{E}}^{\infty}(f)$.
Surve $[a_jb] \cap \mathbb{Q}$ and $[a_jb] \setminus \mathbb{Q}$ are donse in $[a_jb]$,
We have
 $\lim_{x \to a} g(x) = f(a) + \frac{e}{2} + \frac{1}{x \to a} + \frac{1}{x \to a} = \frac{1}{x \to a} + \frac{1}{x \to a} +$

eg. let
$$l_{n} = space of bounded sequences with downstrict
let $\mathcal{E} = subset of conjugent sequences.$
Then \mathcal{E} is nowhere dense in (l_{n}, d_{n}) .
Pf: We only need to show (1) \ge (2) in the following:
(1) \mathcal{E} is closed.
Pfof(1) let x=tx n's $\in l_{n} \setminus \mathcal{E}$.
Then Xn diverges and
 $L = linimup Xn > linimfXn = l$.
Take $\mathcal{E} = \frac{L-l}{3} > 0$
then $\forall y = lyn's \in B_{\mathcal{E}}^{\infty}(X)$, we have
 $Xn - \mathcal{E} < yn < Xn + \mathcal{E} \quad \forall n$
 $\Rightarrow \begin{cases} linimap Xn - \mathcal{E} \le linimp Yn \\ linimp Xn - \mathcal{E} \le linimp Yn \end{cases}$
 $= linimp Yn \le l_{-\mathcal{E}} = \frac{2L+l}{3} > \frac{L+2l}{3} \quad (sime L>l)$
 $= l+\mathcal{E} \ge linimp Yn$
 $\Rightarrow y = lyn's is divergent.$
Hence $B_{\mathcal{E}}^{\infty}(X) \subset low \mathcal{E} \times This proves (1)$.$$

(2)
$$l_{00} \mid \xi \in dence.$$

Pfof(2): Let $B_{\varepsilon}^{\infty}(x)$ be a ball in l_{00} .
We need to show that $B_{\varepsilon}^{\infty}(x) \wedge (l_{00} \mid \xi) \neq \emptyset$.
If $x \in l_{00} \mid \xi$, we are done.
If $x \in \zeta$, then $x = ix_n i$ is convergent.
Let $L = \lim_{n \to \infty} x_n$.
Then $\exists n_0 > 0$ st. $[x_n - L] < \frac{\varepsilon}{3}$, $\forall n \ge n_0$.
Define $y = iy_n i \in l_{00}$ by
 $y_n = \begin{cases} x_n, & i \in n < n_0 \\ L + \frac{\varepsilon}{3}, & i \in n > n_0 < n_0 \\ L - \frac{\varepsilon}{3}, & i \in n > n_0 < n_0 \end{cases}$

Then $|X_n-Y_n|=0$ if $n < n_0$ and $|X_n-Y_n| \leq |X_n-L|+|L-Y_n| \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3}, \forall N \geq N_0$

$$\Rightarrow d_{oo}(x,y) \leq \frac{2\varepsilon}{3} \langle \varepsilon . i \varepsilon . y \in B_{\varepsilon}^{\infty}(x).$$

However linearly $y_{n} = L + \frac{\varepsilon}{3} > L - \frac{\varepsilon}{3} = \lim_{x \to \infty} \int y_{y}.$
$$\therefore y \in loo > \varepsilon.$$

$$\Rightarrow B_{\varepsilon}^{\infty}(x) \cap (loo > \varepsilon) \neq \emptyset.$$

2f: (a) Let
$$E \subset X$$
 be a set of $1St$ category.
Then $E = \bigcup_{n=1}^{\infty} En$ for some nowhere dense sets
 $En, n=52,3,...$
Let $F \subset E$, then by $Rop (F(a))$,
 $F \cap En$ is nowhere dense, $\forall n$.
Hence $F = F \cap E = \bigcup_{n=1}^{\infty} (F \cap En)$ is of $1St$ category.
(b) Let $E_n = \bigcup_{k=1}^{\infty} En, k$, $En, k = nowhere dense$.
 $\Rightarrow \bigcup_{n=1}^{\infty} En = \bigcup_{k=1}^{\infty} En, k$
 $= \bigcup_{n=1}^{\infty} En, k$ is of $1St$ category.
 $(n,k) \in NKM$
(C) If $E = \{x_i\}_{i=1}^{\infty} \subset X$, then $prop (F, F(c))$
 $\Rightarrow \{x_i\}$ is nowhere dense $\forall i$
 $\Rightarrow E = \bigcup_{i=1}^{\infty} \{x_i\}$ is of $1St$ category.

Thur 4.9 (Baire Category Theorem)
In a complete methic space, any set of 1st category
Alao empty interior.
Pf: let the complete methic space be (X, d). And
let
$$E = \bigcup_{n=1}^{\infty} E_n \subset X$$
 be of 1st category,
where E_n is nowhere dense, $\forall n$.
Consider any open methic ball $B_{r_0}(x_0)$ of X .
Since E_i thas empty interior (by dofinition of nowhere
dense), $(X \setminus E_i) \cap B_{r_0}(x_0) \neq \emptyset$.
let $x_i \in (X \setminus E_i) \cap B_{r_0}(x_0)$ are green,

 $\exists r_1 > 0 \text{ s.t.} \quad B_{r_1}(x_1) \subset (X \setminus E_1) \cap B_{r_0}(x_0).$ and $r_1 \leq \frac{r_0}{2}$ (as we can always choose a smaller ball)

Now Ez à nouhere deuse, Ez has empty interior.

$$(X \setminus \overline{E_{2}}) \cap B_{r_{1}}(x_{1}) \neq \emptyset$$

Situillar to the above, $\exists x_{2} \in (X \setminus \overline{E_{2}}) \cap B_{r_{1}}(x_{1})$
and $r_{2} > 0$ with $r_{2} \leq \frac{n}{2}$ st.
 $\overline{B_{r_{2}}(x_{2})} \subset (X \setminus \overline{E_{2}}) \cap B_{r_{1}}(x_{1})$
Note that $\overline{B_{r_{2}}(x_{2})} \subset (X \setminus \overline{E_{2}}) \cap B_{r_{1}}(x_{1}) \subset (\overline{X} \setminus \overline{E_{1}}) \cap B_{r_{0}}(x_{0})$
Repeating the process, we obtain $\{x_{n}\}_{n=1}^{\infty} \subset \overline{X}$
and $\{r_{n}\}_{n=1}^{\infty} \subset R_{1}$ such that
(a) $\overline{B_{r_{n}}(x_{n+1})} \subset B_{r_{n}}(x_{n})$,
(b) $r_{n+1} \leq \frac{r_{n}}{2}$,
(c) $\overline{B_{r_{n}}(x_{n})} \cap \overline{E_{j}} = \emptyset$, $\forall j = j_{2}, \dots, n$.
By (a) $a(b)$, $\{x_{n}\}$ is a Cauchy sequence. Hence
completeness of $X \Longrightarrow \exists x \in \overline{X}$ s.t.
 $x_{n} \rightarrow x$.
By (a) again, $x_{n+1} \in \overline{B_{r_{n}}(x_{n})}$ $\forall m = 1, z, z, \dots$

Hence Thm 4.9 can be rephased as

Thm 4.9' (Baire Category Theorem) In a complete métric space, countable intersection of open dense sets is dense.

i.e. If (X,d) is complete and $G_n \subset X$ is a segume of open dense sets in X, then $\bigcap_{n=1}^{\infty} G_n$ is dense.