Note: E is nowhere dense $\iff E\overline{E}$ is dense in \overline{X} .

 Pf : E is nowhere dense \Leftrightarrow $\forall x \in \mathbb{Z}$ and any $\forall x \circ \circ \circ \mathbb{R}$ $(x) \notin \overline{\Xi}$. \Leftrightarrow $\forall x \in \mathbb{X}$ and any $\forall >0$ $B_{k}(x)\cap(\overline{X\backslash E}\,)\neq\emptyset$ \Leftrightarrow $X\subseteq$ is dense. $*$

Bet: Let (x, d) be a netric space. A point ^x ^c ^E is called an isolated point if XS is open in X

Note: As $\{x\}$ is always closed in a metric space 1x's is both open and closed in & lift x is an isolated point.

0g. • IR has no isolated points. 0.791 points in Z (subspace of R) are isolated. $(\forall nEZ, \nmid n)=B_z(n)$ is open in Z)

Prop4.7	Let (X, d) be a metric space.
(a) \overline{F} is nowhere dense in $X \Rightarrow$	
\overline{F} is nowhere done in X and \overline{F} is nowhere.	
dense in X if $\overline{F}' \subset E$.	
(b) The union of finitely many nowhere dense.	
set: $(\overline{n} \times)$ is nowhere dense (in X).	
(c) If (X, d) has no isolated point, then every finite set is nowhere dense.	

If: (4) Trivial.

\n(6) Let
$$
E_1, E_2
$$
 be nowhere due sets.

\nThen $G_1 = \mathbb{X} \setminus \overline{E_1}$ and $G_2 = \mathbb{X} \setminus \overline{E_2}$

\nare open dense set. Clearly $G_1 \cap G_2$

\nis open. We claim that it is due in \mathbb{X} .

\nIn fact, $\forall x \in \mathbb{X}$ and $r > 0$.

 G_1 dense $\Rightarrow B_r(x) \cap G_1 \neq \emptyset$ \Rightarrow I X E Br(x) \cap G $Sing$ $\mathbb{R}_{r}(x) \cap \mathbb{G}_{1}$ is open, \exists \mathbb{P} $>$ \circ such that B_{ρ} (x1) C B_{r} (x) ΛG_{1} . Now Gz dence \Rightarrow $B_{\rho}(x_1) \cap G_{2} \neq \emptyset$. $B_r(x) \cap G_1 \cap G_2 \neq \varphi$ This proves the claim and hence $E_1UE_2 = X \setminus (G_1 \cap G_2)$ is nowhere dense $By (a)$, $E_1 \cup E_2$ is also nowhere dense. Then introduction \Rightarrow $\bigcup_{k=0}^{\infty} E_{i}$ is nowhere dense provided E₁, ... Ek are nowhere dense

 (c) If (X,d) has no isolated point, then $\forall x\in\mathbb{Z}$, $\{x\}$ is nowhere dense in \mathbb{Z} .

Otherwise
$$
\{x\}=\overline{\{x\}}
$$
 (atains some open balls
\n $B_{\Gamma}(y)$. This implies $y=x$
\nand $\{x\} = B_{\Gamma}(x)$ is open, contradicting the
\nasumption that $x = not$ is related.
\nThen by part (b) , any finite set is
\nnumbered. $\frac{dy}{dx}$
\n \Rightarrow a $uy = |x-y|$) has no isolated point
\n \Rightarrow a $uy = \{x_1, ..., x_n\}$ is nonimeter.

- $IN = \{1, 2, 3, \cdots\}$ courtable and nowhere dense.
- . Q comitable, but not nowhere dense.

Examples in infinite dimensional numed spaces (Ref: Elementary Real Analysis" by B. Thomson, J. Bruckner & A Brucker e Let $M[a,b]$ = space of bounded functions on $[a,b]$. Then $||f||_{\infty} = \frac{\text{sup}}{\text{[a,b]}}|f(x)|$ is well-defined and is α norm on $M[a,b]$. Clearly (CTa,bJ, dos) à a metric (also vecta) subspace of (M[a,b], doo). Clain: C[a,b] is nowhere dense in M[a,b] (with respect to da metric). (1) Cleanly, CTa,b] is closed (uniform limit of the fens We only need to show that (z) y $B_{\epsilon}^{\infty}(f) \subset M[a,b],$ $B_{\epsilon}^{\infty}(f) \cap (M[a,b] \setminus C[a,b]) \neq \emptyset$. (i) If $f \in M[a,b] \setminus C[a,b]$, we are done. $(i\acute{u})$ If $f \in C[a,b]$, define g $f(x)+\frac{\epsilon}{2}$, $x\in [a,b]\cap \mathbb{Q}$ $x \in [a, b] \setminus \bigoplus$.

Then
$$
g(x) - f(x) = x \frac{\epsilon}{2}
$$

\n
$$
\Rightarrow ||g - f||_{\infty} = \frac{\epsilon}{2}
$$
\n
$$
\Rightarrow ||g - f||_{\infty} = \frac{\epsilon}{2}
$$
\n
$$
\therefore \quad g \in B_{\epsilon}^{\infty}(f)
$$
\nSince [a, b] and [a, b] \lor \mathbb{Q} \text{ are does in } [a, b]

\nWe have

\n
$$
\lim_{x \to a} g(x) = f(\omega) - \frac{\epsilon}{2}
$$
\n
$$
\lim_{x \to a} f(g(x) = f(\omega) - \frac{\epsilon}{2})
$$
\n
$$
\Rightarrow g \in M[a, b] \lor C[a, b]
$$
\n
$$
\Rightarrow g \in M[a, b] \lor C[a, b]
$$
\n
$$
\therefore B_{\epsilon}^{\infty}(f) \land (M[a, b] \lor C[a, b]) \neq \emptyset
$$
\nor by contradiction: $\forall g \in C[a, b]$, then $g - f = \{\frac{\epsilon}{2}, [a, b] \land \mathbb{Q}\}$

\nis continuous, which is impossible.

\nHere $g \in M[a, b] \lor C(a, b]$.

29. Let l_{0x} = space of bounded equations with l_{0x}
10. C = subset of $convuyydt$ equals.
10. C is no other clause in (l_{0x}, d_{n}) .
21. W_{l} only read to show $U) \geq (2)$ in the following:
11. C is closed.
12. W_{l} (1) $l_{l} \neq l_{l} \land R$ is l_{w} .
13. W_{l} (1) $l_{l} \neq l_{l} \land R$ is l_{w} .
14. W_{l} (1) $l_{l} \neq l_{l} \land R$ is l_{w} .
15. W_{l} (1) $l_{l} \neq l_{l} \land R$ is l_{w} .
16. l_{l} (1) $l_{l} \neq l_{l} \land R$ is l_{l} (1) l_{l} .
17. W_{l} (1) l_{l} (1) l_{l} (1) l_{l} (1) l_{l} (1) l_{l} .
18. C = l_{l} (1) l_{l}
19. l_{l} (1) l_{l} (1) l_{l}
20. l_{l} (1) l_{l}
3. l_{l} (1) l_{l} (1) l_{l}
4. l_{l}

(2)
$$
l_{\infty}
$$
 (2) l_{∞} (2) l_{∞} (3) Let $B_{\epsilon}^{\infty}(x)$ be a ball in l_{∞} .
\nWe need to show that $B_{\epsilon}^{\infty}(x) \cap (l_{\infty})^{\infty} \neq \emptyset$.
\nIf $x \in l_{\infty}$ (1) $x = l_{\infty}$ (2) $x = l_{\infty}$ (3) $n_{\infty} \neq \emptyset$.
\nLet $L = l_{\infty}$ (2) $x = l_{\infty}$ (3) $x = l_{\infty}$ (4) n_{∞} (5) $x = l_{\infty}$ (6) $x = l_{\infty}$ (7) n_{∞} (8) $\frac{1}{2} = \frac{1}{2}$ (9) $n_{\infty} = \begin{cases} x_{n} & \text{if } n < n_{\infty} \\ 1 + \frac{\epsilon}{3} & \text{if } n > n_{\infty} \end{cases}$ and $l_{\infty} = \begin{cases} x_{n} & \text{if } n < n_{\infty} \\ 1 + \frac{\epsilon}{3} & \text{if } n > n_{\infty} \end{cases}$ and $l_{\infty} = \begin{cases} x_{n} & \text{if } n < n_{\infty} \\ 1 - \frac{\epsilon}{3} & \text{if } n > n_{\infty} \end{cases}$ and $l_{\infty} = \begin{cases} x_{n} & \text{if } n < n_{\infty} \\ 1 - \frac{\epsilon}{3} & \text{if } n > n_{\infty} \end{cases}$

Then $|x_n-y_n|=0$ if $n and$ $(X_{N}-y_{N})\leq |X_{N}-L|+|L-y_{N}| \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2^{\epsilon}}{3}$ & $N \geq N_{0}$

$$
\Rightarrow d_{\infty}(x,y) \leq \frac{2\epsilon}{3} < \epsilon. \text{ ie } y \in B_{\epsilon}^{\infty}(x).
$$

However, $lim_{x \to \infty} lim_{\omega \in \omega} y_{n} = L + \frac{\epsilon}{3} > L - \frac{\epsilon}{3} = lim_{\omega} f y_{\omega}.$

$$
\Rightarrow y \in ln \setminus \ell.
$$

$$
\Rightarrow B_{\epsilon}^{\infty}(x) \cap (ln \setminus \epsilon) \neq \emptyset. \times
$$

Ref A set in ^a metric space is called of first category for meager if it can be expressed as ^a countable union of nowhere dense sets ^A set ⁵ of second category if it is not of first category ^A set is called residual if its complement is of firstcategory

Prop 4.8	let (\mathbb{X}, d) be a metric space.
(a) Every subset of a set of first category a of first category.	
(b) The union of countable many sets of first category.	
so of first category.	
(c) If (\mathbb{X}, d) has no isolated point, then every countable subset of \mathbb{X} is of first category.	

Pf: (a) Let
$$
E \subset X
$$
 be a set of 1st category.
\nThen $E = \bigcup_{n=1}^{\infty} E_n$ for some nowhere dense sets
\n E_n , $n=1,2,3,...$
\nlet $F \subset E$, then by $Rep(f, T^{(a)})$
\n $F \cap E_n$ is a number of \cup 1st category
\n H and $F = F \cap E = \bigcup_{n=1}^{\infty} (F \cap E_n)$ is of 1st category
\n(b) let $E_n = \bigcup_{k=1}^{\infty} E_{n,k}$, $E_{n,k} =$ nonwhere done.
\n $\Rightarrow \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{n,k}$
\n $= \bigcup_{(n,k) \in \mathbb{N} \times \mathbb{N}} E_{n,k}$ is a property
\n(c) If $E = \{x \in X : \sum_{k=1}^{\infty} C X$, then $prob(f, T^{(c)})$
\n $\Rightarrow \{x_i\}$ is a number above. If $\overline{C} = \bigcup_{k=1}^{\infty} \{x_k\}$ is a function of \overline{C}

Pryde let d be ^a metricspace ^a Every subset containing ^a residual set is residual ^b The intersection of countable many residual sets is ^a residual set If ^I ^d has no isolatedpoint then complement of ^a countable set is ^a residual set Pt By taking complement in Prop⁴⁸ eg4 LR has no isolated point in standard metric ^f ^j is nowhere dense forany rational number ^Q is of 1St category since it is ^a countable union of 3Gj's Hence Ik IRLOn the set of irrational numbers is ^a residual set in IR

Thm 4.9 (Baire Category Theven)
In a complete matrix space, any set of 1st category
Haa empty interior.
At $E = \bigcup_{n=1}^{n} E_n \subset X$ be of 1st category,
but $E = \bigcup_{n=1}^{n} E_n \subset X$ be of 1st category,
where E_n is nowhere dense, but.
Consider any open matrix ball $B_{r_0}(x_0)$ of X .
Since \overline{E}_1 has empty interior. (by definition of nowhere dense), $(X \setminus \overline{E}_1) \cap B_{r_0}(x_0) \neq \emptyset$.
Let $x_1 \in (X \setminus \overline{E}_1) \cap B_{r_0}(x_0)$
Since both $X \setminus \overline{E}_1 \& B_{r_0}(x_0)$ are \emptyset and
$\exists r_1>0$ st.
$\overline{B}_{r_1}(x_1) \subset (X \setminus \overline{E}_1) \cap B_{r_0}(x_0)$.

and $r_i \leqslant \frac{r_o}{z}$ (as we can always choose a smaller ball

Now E_z is nowhere dense, \overline{E}_z has empty interior.

\n- \n
$$
(\Sigma \setminus \overline{E_{\lambda}}) \cap B_{r_{i}}(x_{i}) \neq \emptyset
$$
\n
\n- \n $S\mu\lambda_{i}^{i}|_{\alpha_{i}} + b + keabwe$, $\exists x_{i} \in (\Sigma \setminus \overline{E_{\lambda}}) \cap B_{r_{i}}(x_{i})$ \n
\n- \n $Z \geq 0$ with $r_{2} \leq \frac{r_{1}}{2} \leq r_{1}$.\n
\n- \n $\overline{B_{r_{2}}(x_{2})} \subset (\Sigma \setminus \overline{E_{2}}) \cap B_{r_{i}}(x_{1})$ \n
\n- \n $N \circ t_{2} + ka + \overline{B_{r_{i}}(x_{i})} \subset (\Sigma \setminus \overline{E_{2}}) \cap B_{r_{i}}(x_{1}) \subset (\Sigma \setminus \overline{E_{1}}) \cap B_{r_{o}}(x_{0})$ \n
\n- \n R equations, we obtain $\{\chi_{n}\}_{n=1}^{m} \subset X$ \n
\n- \n C and $\{\Gamma_{n}\}_{n=1}^{m} \subset B_{r_{n}}(x_{n})$, C and $B_{r_{n+1}}(x_{n+1}) \subset B_{r_{n}}(x_{n})$,\n
\n- \n C and $\overline{B_{r_{n+1}}(x_{n+1})} \subset \overline{B_{r_{n}}(x_{n})}$,\n
\n- \n C and C is a Cauchy sequence. Hence, we have C by $(a) \geq (b)$, $\{\chi_{n}\}$ is a Cauchy sequence. Hence, we have S with $n \to \infty$.\n
\n- \n $S_{n} \Rightarrow \exists x \in X \leq 1$.\n
\n- \n $S_{n} \Rightarrow S$ is a Cauchy sequence. Hence, we have <math display="

$$
\Rightarrow X \in \overline{Br_n(x_n)}:
$$
\nby (1) $x(G)$ $x \in \mathbb{Z} \setminus \overline{E_n}$, and $x \in B_r(x_0)$
\nSince n is arbitrary
\n $x \in \bigcap_{n=1}^{\infty} (\mathbb{Z} \setminus \overline{E_n}) = \mathbb{Z} \setminus \bigcup_{n=1}^{\infty} \overline{E_n}$
\nHence $(\mathbb{Z} \setminus \bigcup_{n=1}^{\infty} \overline{E_n}) \cap B_{r_n}(x_0) \neq \emptyset$.
\n $\Rightarrow (\mathbb{Z} \setminus \bigcup_{n=1}^{\infty} E_n) \cap B_{r_n}(x_0) \neq \emptyset$.
\n $\Rightarrow (\mathbb{Z} \setminus \bigcup_{n=1}^{\infty} E_n) \cap B_{r_n}(x_0) \neq \emptyset$.
\nSince $B_{r_n}(x_0)$ is arbitrary, $\overline{E} = \bigcup_{n=1}^{\infty} E_n$ if a complex
\n $\overline{B_n}(a)$.
\n $\Rightarrow \mathbb{Z} \setminus \overline{E}$ is an open dense set.
\nHence Thus 4.9 can be replaced as

Thm 4.9' (Baire Category Theorem) In a complete metric space countable intersection of open dense sets is dense

ie. If (\mathbb{X},d) is complete and $G_n\subset \mathbb{X}$ is a sequence of open dense sets in Σ , then $\bigcap_{n=1}^{\infty} G_n$ is dense