Another capproach to Cauchy-Peano Theorem using
Ascoli's Theorem
(Piecewise Lincor Approximation)
Ut
$$R = [to = a, to + a] \times [xo - b, xo + b]$$

 $M = \sup [f(t, x)]$ as before.
(May assume $M \ge 1$ as we adjused an upper bd.)
Refine
 $W = \{(x, x) \in R : |x-xo| \le M + t - to|\}$
by Symmetry, $Proj(W)$ atto $t - axis$ is $[to a', to + a']$
for some $a' \in (0, a]$.
Note that $f \in C(R) \Longrightarrow f \in C(W)$
 $\Longrightarrow f$ is uniformily continuous on W (sing W is classed a
 $W = \{t_{1}, x_{1}\}, (t_{2}, x_{2}) \in W$ with
 $|t_{1} - t_{2}| < 0$ and $|x_{1} - x_{2}| < \delta$.

On the (thalf) interval
$$[to_{s}, t_{0}+a']$$
,
Choose $t_{0} < t_{1} < t_{2} < \cdots < t_{k} = t_{0}+a'$
with $[t_{i}-t_{i+1}] < \frac{\delta}{M}$ for $i=1, \cdots, k$ subject (a_{i}, x_{0})
Define a function $k_{2}(t_{0})$ on $[t_{0}, t_{0}+a']$ $x_{1}^{1} + \cdots + x_{i}^{-1} + \frac{\delta}{2}(t_{i}, x_{i})$
(1) $k_{2}(t_{0}) = x_{0}$,
(2) $k_{2}|_{[t_{1}, t_{i}, t_{i}]}$ is linear with slope $f(t_{i-1}, x_{i-1})$
where x_{i} can be determined successively by:
(i) x_{i} determined by $k_{2}|_{[t_{0}, t_{1}]}$ is linear paramaged
through (t_{0}, x_{0}) and with slope $f(t_{0}, x_{0})$.
(ii) Note that $|f(t_{0}, x_{0})| \leq M(t_{1} - t_{0})$
 \therefore $(t_{1}, x_{i}) \in W \subset \mathbb{R}$ and tence $f(t_{0}, x_{1})$ well defined.
(iii) then x_{2} determined by $k_{2}|_{[t_{0}, t_{0}]} \ge linear$
 $paramaged through (t_{1}, x_{1}) and with slope $f(t_{1}, x_{2})$.
(iv) Suitlarly, $[f(t_{0}, x_{0})] \leq 1[f(t_{1}, x_{1})] \leq M$, we have
 $|x_{2} - x_{0}| \leq M(t_{1} - t_{0})$
 \therefore $(t_{2}, x_{2}) \in W \subset \mathbb{R}$ and $f(t_{0}, x_{2})$ well defined.$

And so on, the function keets) is defined on [to, tota'] Note that

The field is also uniformly bounded [to, total].
In fact, W is convex and the ends points
$$(\pm, \pm)$$
 with
 $\pm = \Re_{2}(\pm z)$ belongs to W, we have $(\pm, \Re_{2}(\pm)) \in W$
by piecewise linearity. As WCR, $|\Re_{2}(\pm) - \times_{0}| \leq b$
and hence $|\Re_{2}(\pm)| \leq |\chi_{0}| + b$, $\forall \pm \in [\pm_{0}, \pm_{0} + d]$ and $\forall \in \Sigma$.

Here Ascoli's Thereoun implies that { kes is precompact.
In particular, the seguence {
$$k_{\pm}$$
's in C[to, tota]
convergent subsequence { k_{\pm} 's in C[to, tota]
with $k_{\pm}(t) \Rightarrow k(t) \in C[t_0, t_0ta]$, as $l \Rightarrow t_{00}$.
To show $R(t)$ satisfies the different equation, we
Sirst show that k_{\pm} is an approximated solution
for any $E > 0$.
Causider $t \in [t_0, t_0ta]$ and $t \neq t_0$, $t_0 = t_0$.
Then $\exists j=1, 2, \cdots h$ such that $(For \ t_0 = t_0 > 0 + corresponding)$
 $t_{j-1} < t < t_j$.
Uning $|t_{-t_{j-1}}| < |t_j - t_{j-1}| < \overline{M}$, we have
 $|k_{\pm}(t_{j-1}, k_{\pm}(t_{j-1})| \leq M|t_{-t_{j+1}}| < \delta$,
Here $|f(t_{j-1}, k_{\pm}(t_{j-1})| \leq M|t_{-t_{j-1}}| < \delta$.

Surce ke is piecewise linear,

$$k_{\epsilon}(t) = f(t_{j-1}, k_{\epsilon}(t_{j-1}))$$
 (by our construction)

Hence

$$\begin{cases} k_{\xi}(t) - f(t, k_{\xi}(t)) \\ \leq \varepsilon \end{cases}, \quad \forall t \in [t_0, t_0 + \alpha] \\ \forall t_0 = x_0, \quad k_{\xi}(t) \\ \Rightarrow \quad \forall t_0 = x_0, \quad k_{\xi}(t) \\ \Rightarrow \quad \forall t_0 = x_0, \quad k_{\xi}(t) \\ \Rightarrow \quad \forall t_0 = f(t, x) \\ \forall t_0 = x_0 \end{cases}$$

in the sense that
$$\int \frac{dk\epsilon}{dt} = f(t, k\epsilon) + remainder $\chi(t_0) = x_0$$$

with
$$\||\text{remainder}\|_{\infty} \leq \varepsilon$$
.
Integrating the ODE, we have
 $\Rightarrow \quad k_{\varepsilon}(x) = k_{\varepsilon}(x_{0}) + \sum_{i=1}^{3-1} \int_{x_{i-1}}^{x_{i}} k'_{\varepsilon}(s) ds + \int_{x_{j-1}}^{x} k'_{\varepsilon}(s) ds$
 $= x_{0} + \int_{x_{0}}^{x} k'_{\varepsilon}(s) ds$

$$\Rightarrow \left| k_{\varepsilon}(t) - X_{0} - \int_{t_{0}}^{t} f(s, k_{\varepsilon}(s)) ds \right| \leq \int_{t_{0}}^{t} |k_{\varepsilon}(s) - f(s, k_{\varepsilon}(s))| ds < \varepsilon \alpha'.$$

In particular, if we denote
$$g_{\ell} = k t_{\ell}$$
, (ie $\epsilon = t_{\ell} = 0$),
Here $|g_{\ell}(t) - X_{0} - \int_{t_{0}}^{t} f(s, g_{\ell}(s)) ds| \leq \frac{a'}{n_{\ell}}$, $\forall l = 1, 2, 3, \cdots$

Hence
$$[k(t) - x_0 - \int_{t_0}^{t} f(s, k(s)) ds]$$

 $\leq [k(t_0 - x_0 - \int_{t_0}^{t} f(s, k(s)) ds - g(t_0) + x_0 + \int_{t_0}^{t} f(s, g(s)) ds]$
 $+ [g_1(t_0) - x_0 - \int_{t_0}^{t} f(s, g_1(s)) ds]$
 $\leq [[k - g_j]|_{t_0} + \int_{t_0}^{t} [f(s, g_1(s)) - f(s, k(s))] ds + \frac{q'}{n_e}].$
Since $[[g_j - k]|_{t_0} \Rightarrow 0$ and f is uniform continuity,
 $\int_{t_0}^{t} [f(s, g_j(s)) - f(s, k(s))] ds \Rightarrow 0$ as $j \Rightarrow t.$
Therefore by letting $j \Rightarrow t.$ are have
 $k(t_0 = x_0 + \int_{t_0}^{t} f(s, k(s)) ds], \quad \forall t \in [t_0, t_0 ta'].$
 $\Rightarrow \int_{t_0}^{t} \frac{dk}{dt} = f(t, k(t_0)) \quad \forall t \in [t_0, t_0 ta'].$
Suivillarly argument $\Rightarrow = R$ on $t \in [t_0 - a', t_0]$

Saltisfying
$$d\hat{k} = f(x, \hat{k}(x)) \quad \forall x \in [t_0 - a], t_0]$$

 $\hat{k}(t_0) = X_0$.

Note that by construction $\frac{dk}{dt}(t_0) = f(t_0, x_0) = \frac{dk}{dt}(t_0).$ (Hence $x(t_0) = \int k(t_0), \quad t \in [t_0, t_0 + a']$ $F(t_0), \quad t \in [t_0 - a', t_0]$ $T(t_0), \quad t \in [t_0 - a', t_0]$ $T(t_0), \quad t \in [t_0 - a', t_0]$ $T(t_0), \quad t \in [t_0 - a', t_0]$

Remarks (i) This proof doesn't need the Picard-Lindelöf Theorem.

(ii) The spirit of this proof is more in line with solving the (IVP) numerically.
(iii) The 1st proof solve "approximated problems"; the 2nd proof solve the (ariginal) problem "approximateleg".

\$4.2 Baire Category Thenem
Def: Let (X,d) be a metric space. A set
$$E in X$$

is dense if $\forall x \in X$, and $E > 0$,
 $B_{E}(x) \cap E \neq \emptyset$.
Notes: (i) Easy to see that E is dense $\Leftrightarrow \overline{E} = \overline{X}$.
(ii) X is clanse ($\overline{m}(X,d)$).
eg: If (X, discrete metric), then for $0 \le 1 e$
 $x \in X$, $B_{E}(x) = 1 \times 1$, Therefore E is
dense in X implies $E = X$. (i.e. X
is the only clanse set in (X, discrete).)

Q1: In (IR, standard metric), Q & IRIQ=I are dense.

Def: Let
$$(X, d)$$
 be a metric space. A subset
 $E \subset X$ is called nowhere donse if its closure
does not contain any netric ball.
(i.e. E thas empty interior.)