Thm4.2 (Ascolis Theorem)
Suppose that G is a bounded nonempty open set in \mathbb{R}^m .
Then α set $\xi \in C(\overline{G})$ (= $C_b(\overline{G})$) is precompact
if ξ is bounded (in supnam) and equicontiations).
Pf: Define $\overline{E} = \bigcup_{k=0}^{\infty} E_k$, where
$E_k = \{x = \frac{1}{2}k\bigg(\frac{k_1}{2}\bigg) \in \overline{G} : \ell_i \in \mathbb{Z}, i \exists j : m \}$.
Then \overline{G} closed and bounded \Rightarrow
E_k as finite.
Heus a failure.
$E = \bigcup_{k} E_k$ is countable.
Let $\{f_n\}$ be a sequence in \overline{E} . Then ξ bounded

 \Rightarrow \exists M > 0 such that $||f_n||_{\infty}$ \leq M, \forall n

 $i.e.$ $|f_n(x)| \leq M$, $\forall n \geq \forall x \in \overline{G}$ In particular, V XE E, $|\mathcal{f}_n(x)| \leq M$, $\forall n$. ie If we arrange the points of ^E in ^a A sequence $E = \xi \xi_0$ $\xi_{j=1}$, then \forall 121 $\{\frac{1}{2n}(\overline{z}_{\overline{j}})\}$ is a bounded sequence. Hence one can apply Lemma 4.3 to faid ^a subsequence Iga of Ifn's (voing the same notation "n" for the index) such that $\forall x \in E$, $g_n(x)$ is convergent. We claim that Gn is the required convergent subsequence of fu in the nective (C(G), da).

Note that we only have pointwise convergence for constable many points at this moment $Sing(CCG), das>is complete$, we only med to show that $\{g_{n}\}\$ is a Cauchy sequence in $(C(\bar{e}_l),d_{\infty})$. By equicarturaly of $\mathcal{E}_{1} \Rightarrow$ equicarturaly of $\{f_{n}\}$ $YESO, \exists S>0$ such that $|g_n(x)-g_n(y)|<\frac{\epsilon}{3}$, $\forall n \ge \forall x,y\in G$ Note that if he satisfies $\frac{1}{2k} < \delta$ then $\forall x \in G$, $\exists z_j \in E_k$ such that $(x - z_j | < \delta)$ (see figure) and hence $\left[G_n(x) - G_n(z_3) \right] < \frac{\varepsilon}{3}$.

Now take
$$
N_0 = \max_{z_j \in E_n} n_0(z_j) \ge 0
$$
,
\n $\frac{1}{3} \cdot 10^{-5}$ we have
\n $|g_n(x) - g_m(x)| < \epsilon$, $\frac{1}{3} \cdot 10^{-5}$
\n $\frac{1$

Remarks

(1) Ascoli's Theorem remains valid for bounded and equicartinuous subsets of $CCG)$. (i.e. No need to take closure.) It is because "leguicartinuar" \Rightarrow "uniform continuous on G", and then can be extended to unifam continuous on G. (Details Omitted

(2) However, bounderiness of the domain G caunot be removed: Egfo? Let $\overline{G} = [0, \infty)$ CR . Take a Q E C [O, 1] such that $P\neq O$ and $P(x)=0$ on $[0,1]\setminus[\frac{1}{2},\frac{2}{3}]$

and define $f_{n}(x) = \begin{cases} \varphi(x-n) & \text{if } x \in [n,n+1] \\ 0 & \text{otherwise.} \end{cases}$ Then me can easily check that $f_n\in C(\overline{G}) \quad (\text{in-fact } f_n\in C^1(\overline{G}))$ and $||f_n||_{\infty \overline{G}} = ||\varphi||_{\infty, \text{Io}, 1} > 0$ (and a fixed constant) : $\zeta=\{\frac{1}{n}\}$ is bounded subset in $C(\overline{G})$.

By Chain rule, $||\frac{d f_{\alpha}}{dx}||_{\alpha,\overline{G}}=||\frac{d\phi}{dx}||_{\alpha,\overline{\iota}_{0},l_{0}}>0$. Hence Prop4.1 implies that $\Sigma = \{\pm_n\}$ is also equicartimens. Suppar J subsequence { f_{∞} } of { f_{∞} } converges to same fECG) in doo. ie. $f_{n_i} \rightarrow f$ unifouly on G \Rightarrow pourtuise convergence f_{n} $(x) \Rightarrow f(x)$, $\forall x \in \overline{G}$. However, farford x, fn(x) =0, Hn>x, we neet trave $\lim_{\lambda\to\infty} \int_{M_{\tilde{d}}(x) = 0}$ \therefore $f(x)=0$, $\forall x \in \overline{G}$. This is a contradiction, since $0 < || \phi ||_{\infty}$ $_{[0,1]} = || \oint_{\eta_{\hat{1}}} ||_{\infty,\overline{\zeta}} = || \oint_{\eta_{\hat{1}}} - \oint ||_{\infty,\overline{\zeta}} \Rightarrow 0$ Hence \geq is bounded and equicartainers, but Ascoli's Theorem doesn't hold. *

Converse to A scoli's Theorem:

Thm4 Arzola's Theorem Suppose that ^G is ^a bounded nonemptyopenset in IR Then everyprecompactset in CC^E must be bounded and equicontinuous

PE: Let
$$
\Sigma \subset C(G)
$$
 be precompact.

\nIf Ξ is unbounded, then Ξ $5n \in \Sigma \subset C(G)$

\nsuch that $\lim_{n \to +\infty} ||\xi_n||_{\infty} = \infty$.

\nThen $\pm i\overline{\omega}$ subset $\overline{\xi} \ln \underline{\xi}$ of Ξ cannot contain any *imwagedut* subsequence. This contradicts the preimportants, there Ξ must be bounded.

\nNow suppose an the *entropy* that $\overline{\Xi}$ is precompact, bounded but not equicartaneous.

\nThen $\Xi \in \mathfrak{S} > 0$ such that $\forall \delta > 0$

\n $\Xi \times y \in \overline{G}$ and $\overline{\Xi} \in \Xi$ satisfying

 $|f(x)-f(y)| \geq \varepsilon_{o}$ a $d(x,y) < 0$ In particular, by choosing $\delta = \frac{1}{n}$ >0 , for $n = 1, 2, ...$ $\exists x_{q}, y_{\eta} \in \overline{q}$ and $f_{\eta} \in \Sigma$ satisfying $|f_{\eta}(x_{n})-f_{\eta}(y_{n})| \geq \epsilon_{o}$ a $d(x_{n},y_{n})<\frac{1}{n}$. By precompactness, \exists convergent subseq. $\{\xi_{n_k}\}$ of $\langle f_n \rangle$. Suppre $f \in ((\overline{f})$ is the limit, ie $d_{\infty}(f_{n_{k}},f)\rightarrow0$, as $j\rightarrow\infty$. (i.e. fng converges uniformly to f on \overline{G}) Sina G is closed and bounded, the corresponding sequences of paints $\{X_{n_k}\}\binom{\{y_{u_k}\}}{\cdots}$ contains couvergent subsequence. Denotes the subseq. by $1^{x}k5$ k and assume $X_{k} \rightarrow Z \in \overline{G}$. And also denote the corresponding subseg. of {Yn,}

by
$$
\{y_{k}\}
$$
, and the corresponding subreg of $\{f_{\alpha_{k}}\}$
\nby $\{g_{k}\}$. Then $\{g_{k}\} \Rightarrow \{ \tilde{u}_{k} \in (\mathbb{Q}) d_{\infty}\}$
\n $\{x_{k} \Rightarrow \overline{\epsilon} \text{ in } \overline{G}$
\n $\{ \tilde{u}_{k} \leq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \leq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \leq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \leq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\epsilon} \text{ in } \overline{G} \}$
\n $\{ \tilde{u}_{k} \geq \overline{\$

Here for k> nex {ko, k, s,

 $|g_k(x_k) - g(y_k)| \leq (g_k(x_k) - f(x_k)) + |f(x_k) - f(y_k)|$ $+|f(y_k)-g_k(y_k)|$ $< z \epsilon + |f(x_{k})-f(y_{k})|$ $5525 + |f(x_{k})-f(z)| + |f(z)-f(y_{k})|$

42

We've show that $\forall \, \epsilon > 0$, \exists $N_0 = N_{max\{k_0, k_1\}} \geq 0$ Such that

$$
|f_{n_{k}}(x_{n_{k}})-f_{n_{k}}(y_{n_{k}})|<+\epsilon, \quad \forall n_{k} \ge n_{o}
$$

Taking $\epsilon = \frac{\epsilon_{o}}{4}$, we have a *cont*radiation.
 $\therefore \epsilon$ is equicartaneous .

Application to Ordinary Differential Equations

Consider $\frac{dx}{dt} = \frac{1}{\pi}(\kappa_1\kappa_2)$ \mathcal{F} $f_{\text{ob}} = \kappa$ with f continuous (only, not necessary Lipschitz) on $R = [to-a, \text{for } a] \times [x_0 - b, x_0 + b]$. of course, we cannot expect uniquents result, but short time existence can be proved. (Mote: we only proved R'
(case, but it still valid Idea of proof:
Idea of proof:
and the high 41 Weierstrass Approximation There $m \left(m \mathbb{R}^5 \right)^d$ fa high \Rightarrow \exists $\{p_n\}$ sequence of polynomials s.t. $d_{\infty}(\varphi_{n},f)\Rightarrow0\qquad (\tilde{\mu}\text{C(R)})$

Note that it pn satisfies Lipschitz condition Cuniform in t). By Picard-Lindelos Theorem $\exists \alpha'_n > 0 \text{ with } \alpha'_n < \min\{\alpha, \frac{b}{M_n}, \frac{1}{L_n}\}.$

where
$$
M_n = ||\varphi_n||_{\infty, R}
$$

\n
$$
L_n = Lipschit \frac{1}{3} \text{ constant of } \varphi_n \text{ or } R,
$$
\n
$$
S_t = \text{unique solution } X_0 \in C[t_0 - a'_1, k_0 + a'_1]
$$
\n
$$
X_0 + \text{the approximate } (SWF)
$$
\n
$$
\frac{dX_0}{d\theta} = \varphi_0(\theta, X_0)
$$
\n
$$
H_t \in [t_0 - a'_1, k_0 + a'_1]
$$
\n
$$
X_n(\theta_0) = X_0
$$

(3) Then try to apply Ascoli's Thenelin to
\n
$$
\{x_n\}
$$
 and find a convergent subsequence
\n $x_{n_k} \rightarrow x$ for same function $x(x)$.
\nAnd hope that x is the required
\nSreutron.

Issue: Suice f is not assumed to satisfy the Lipschitz condition, one cannot expect $\{L_n\}$ is bounded (In fact, it is unbounded. Otherwise 5 satisfies Lipschitz (andition.)

Then
$$
\min\{\alpha, \frac{b}{M_n}, \frac{1}{L_n}\}\n\Rightarrow 0 \Rightarrow \alpha'_n \Rightarrow 0
$$
.
\nWe will not have an "interval" for the existence
\nof the sifler and, ω $pn \Rightarrow f$ in ((CR) do.
\n $\begin{pmatrix}\n0 & \text{the other }1 \text{ and } 0 \\
\omega e & \text{have } M_n \le M & \text{for some } M > 0 \\
\omega e & \text{have } M_n \le M & \text{for some } M > 0\n\end{pmatrix}$
\nTherefore, to implement our plan, we need to improve
\ntee Picard-lindolöf Thenum to

Prop4.5 Under the setting of Picard-Lindelöf Thenewu,	
\exists uniqui solution X(1) on the interval $[t\rightarrow a', t\rightarrow t\alpha]$	
with X(t) \in [X_0+1, X_0+1]	where a' is any number satisfying $0 < a' < a^k = n$ and $\{a, \frac{b}{M}\}$
$(bary, this implies \exists unique solution on the open interval (t\rightarrow a^k, t\rightarrow a^k).$	

Pf: Omitted (or postpone to the end of term if tune allowed

Thm4.6 (Cauchy-Peano Thunem.)

\nConsider (LVP)
$$
\begin{cases} \frac{dx}{dt} = f(x,x) \\ x(x_0) = x_0 \end{cases}
$$

\nwhere f is continuous on $R = [x_0 - a, x_0 + a] \times [x_0 - b, x_0 + b]}$.

\nThere exists $a' \in (0, a)$ and $a \in (-\frac{1}{3}a \cdot b \cdot b \cdot b)$

\n $x : [x_0 - a', x_0 + a'] \rightarrow [x_0 - b, x_0 + b]$

\nSolving the (LVP).

\nIf: As in the "Uda of Proof",

\n \exists sequence of polynomials $3\uparrow n$ s.t.

\n $\uparrow n \rightarrow 5$ in (CR) d₀₀).

\nThus implies $M_n = ||\uparrow_n||_{\infty, R} \rightarrow M$, where $M = ||\uparrow||_{\infty, R}$.

\nand $\downarrow n$ satisfies the Lipschitz condition.

\n(in *dom* t used to worry about the Lip. constants)

\nBy Prop4.5, \exists unique solution x_n defined on

\n $x_n = (x_0 - a_n, x + a_n)$, where $a_n = m$ in $[a, \frac{b}{m} \cdot b]$,

$$
f_{n}
$$
 the (IVP) $\frac{dx_{n}}{dt} = P_{n}(t, x_{n})$ $t \in I_{n}$
 $x_{n}(t_{0}) = x_{0}$

 \mathcal{L}^{max}

with $X_n(t) \in [x_0 - b_0, x_0 + b]$.

As
$$
a_n = min\{a, \frac{b}{M_n}\} \rightarrow min\{a, \frac{b}{M} \} = a^*
$$

$$
facawy = fixed \quad a' < a^* \quad (a' > 0) = 100 > 0
$$
\n
$$
such that \quad fac \quad n \ge 00
$$

$$
[t_{0}-\alpha^{\prime},t_{0}+\alpha^{\prime}] \subset J_{\mathcal{U}} = (t_{0}-a_{\mathcal{U}},t_{0}+a_{\mathcal{U}})_{\alpha}
$$

Hence
$$
\forall n \ge n_0
$$
,
\n $\times_{n} \hat{\mu}$ defined on $[t_{\text{tot}} \alpha^{\prime}, t_{\text{tot}} \alpha^{\prime}]$.
\n $lim_{T_{\text{tot}}} 1 : \{x_{\text{tot}} \in C[t_{\text{tot}} \alpha^{\prime}, t_{\text{tot}} \alpha^{\prime}] \text{ is equi-continuous}} \cdot \frac{d^{2}x_{\text{tot}}}{d x} = (p_{\text{tot}}(t, x_{\text{tot}})) \le M_{\text{tot}} \forall t$
\n $lim_{T_{\text{tot}}} M_{\text{tot}} \ge M_{\text{tot}} \Rightarrow min_{T_{\text{tot}}} \Rightarrow min_{T_{\text{tot}}} M_{\text{tot}}$
\nBy $Prap(1)$, $\{x_{\text{tot}}\} \text{ is equi-continuous}, x_{\text{tot}}$

Unit 2: $\{X_n\}$ is bounded in (C[toa,tota], do)		
Int fact, (IVP)	$\times_{n}(4) \times x \times \int_{12}^{12} f^{n}(5, X_{n}(5)) ds$, $\forall t \in [toa, tot]$	
...	$ X_{n}(4) \leq X_{0} + a' \frac{e^{i\alpha}}{2!} [I_{n}(5, X_{n}(5)) $	$\leq X_{0} + a' M_{n}$
...	$ X_{n} $ $\omega_{\sim} [\frac{e^{i\alpha}}{4} \frac{1}{4} \frac{e^{i\alpha}}{4!} \frac{1}{4!} \frac{1}{4!$	

Note that X_{47} sateifies $X_{q_{i}}(t) = X_{0} + \int_{.4\cdot v}^{t} P_{n}(s, X_{q_{i}}(s))ds.$ Clearly $X_{u_1^1}(\star) \Rightarrow X(\star)$ as $j \geq +\infty$. We only need to show that $lim_{j\to\infty}\int_{\pm_0}^{\pm_0} \hat{\rho}_{\eta_j}(s, X_{\eta_j}(s))ds = \int_{\pm_0}^{\pm_0} f(s, X(s))ds$. Suirce $f \in C(R)$ & R is closed & bounded in \mathbb{R}^2 f is uniformly cartinuous on R. Therefore, VESO, 3820 Such that \forall (SI, XI), (S2, X2) ER with $|S_{1}-S_{z}|<\delta$ and $|x_{1}-x_{z}|<\delta$. we have $\int f(s_{2},x_{2})-f(s_{1},x_{1})|<\epsilon$. On the other hand, $\|\phi_n - f\|_{\infty, R} \to 0$ \Rightarrow \exists n_0 > 0 st. $|f_n(S,x)-f(s,x)|<\epsilon$, $\forall (s,x)\in R$.

Margfore, fa j sufficiently longe such that $m_{\hat{j}} > n_{\circ}$ λ $\left\| \chi_{q_{\hat{j}}} - \chi \right\|_{\infty} < \delta$

we have

 $\int_{x_n}^{x} p_{n_1}(s, x_{n_1}(s))ds - \int_{x_n}^{x} f(s, x(s))ds$ $\leq \left(\int_{\mathcal{X}_{2n}}^{\mathcal{X}} \hat{f}_{n_{\mathfrak{J}}}(s, \chi_{n_{\mathfrak{J}}}(s)) ds - \int_{\mathcal{X}_{2n}}^{\mathcal{X}} f(s, \chi_{n_{\mathfrak{J}}}(s)) ds \right)$ $+\left(\int_{\mathcal{H}}^{\mathcal{H}}f(s,x_{\mathsf{m}_{1}}(s))ds-\int_{\mathcal{H}}^{\mathcal{H}}f(s,x(s))ds\right)$ $\leq \int_{\mathfrak{X}_{\lambda}}^{\mathfrak{X}}\big|\, \rho_{\eta_{\widetilde{J}}}(s,x_{\eta_{\widetilde{J}}}(s)) - \frac{1}{J}(s,x_{\eta_{\widetilde{J}}}(s))\, \big| \, ds$

 $+$ \int_{4}^{x} $|f(s, x_{\varphi_{1}}(s)) - f(s, x(s))| ds$

 $\leq c \cdot a' + c \cdot a' = 2\epsilon a'$

This shows that $\int_{\mathbb{R}}^{x} \varphi_{\eta_{\widehat{J}}}(\varsigma, x_{h_{\widehat{J}}}(\varsigma))d\varsigma \to \int_{\mathcal{J}}^{x} \xi(\varsigma, X(\varsigma))d\varsigma$

 ω \tilde{j} \rightarrow $+\infty$ γ

Clain 3 ampletes the proof of the thenem. X