Eg 4.1 (Equicatinums, but unbounded)
let
$$\mathbb{X} = \mathbb{E}[1,1]$$
 and consider
 $\mathbb{E} = \{ x \in \mathbb{C}[1,1] : x(t) = t, t \in \mathbb{E}[1,1] \}$.
 $\forall x \in \mathbb{E}, |x(t) - x(s)| \le ||x'||_{\infty} |t - s| \le |t - s|.$
 $\Rightarrow \mathbb{E}$ is equicantinuous (as above).
But \mathbb{E} is unbounded:
 $x_n(t) = \frac{t^2}{2} + n \in \mathbb{E}.$
 $||x_n||_{\infty} = \frac{1}{2} + n \Rightarrow + \infty$ as $n \Rightarrow +\infty$.
(clearly, $|x_n| \le \tan n$ or convergent subsequence.)
eg45 (closed & Bounded, but not Equicantinuous)
lot $\mathbb{B} = \{f \in \mathbb{C}[0, 1] = |f(x)| \le \}, \forall x \in \mathbb{E}[0, 1] \}$
Then \mathbb{B} is closed and bounded.
To show that \mathbb{B} is not equicantinuous, we only need
to find a subset of \mathbb{B} which is not equicantinuous.

Let
$$\{f_n(x) = \min nx \}_{n=1}^{\infty} \subset \mathcal{B}$$
.
Suppose on the contrary that
 $\{f_n(x) = \min nx \}_{n=1}^{\infty}$ is equication.

Then for
$$\xi = \frac{1}{2}, \exists \delta > 0$$
 such that
 $\forall n \ge 1, \& x, y \in [0,1]$ with $|x-y| < \delta$, we have
 $|sin nx - sin ny| < \frac{1}{2}$.

we have $X=0 \ge y=\frac{\pi}{2n} \in [0,1]$ with $|X-y| < \delta$ and $|\sin n \circ - \sin n \cdot \frac{\pi}{2n}| = |0-1| = 1 > \frac{1}{2}$ Which is a contradiction.

Lamma 4.3 Let
$$A = \{ z_j \}_{j=1}^{\infty}$$
 be a countable set
and $f_n = A \rightarrow \mathbb{R}$, $n = i, z_j \cdots$, be a sequence of
functions defined on A . Supprese that for each
 $z_j \in A$, $\{ f_n(z_j) \}_{n=1}^{\infty}$ is a bounded sequence in
 \mathbb{R} . Then there exists a subsequence $\{ f_n \}_{n=1}^{\infty}$
of $\{ f_n \}_{n=1}^{\infty}$ such that $\forall z_j \in A$,
 $\{ f_n(z_j) \}$ is convergent.
Pf : Since $f_n(z_i)$ is a bounded sequence (in \mathbb{R})
 \exists a subsequence S_n^i such that
 $f_n^i(z_i)$ is convergent.
(Note that we have used the same index n
to denote the subsequence S_{n_k} .
The superscript 1 is to denote that it
is convergent under elablished at z_i .)

For this subsequence f'n (of original fn) $f'_{n}(z_{z})$ is bounded (sing) $f'_{n}(z_{z}) \leq (f'_{n}(z_{z}))$ Hence I a subsequence (fn S of (fn) such that LSG(ZZ) S is convergent. Note that since If's is a subseq. of Ifn's, 15n3 is also a subsequence of 1-4s. Also, {fin(zi) } is a subseq. of the convergent subsequence {f'(z,)}, } fr(z,) { is abo convergent. Therefae, we've found a subseq. {f'n 5 of {fa}

Such that
$$\{ \int_{n}^{2} (z_{1}) \}$$
 and
 $\{ \int_{n}^{2} \{ z_{2} \} \}$ are consequent.
And $\{ \int_{n}^{2} \}$ is a subseq. of $\{ f_{n}^{\prime} \}$.
Repetting the process, one can obtain sequences
 $\{ f_{n}^{i} \} (\text{with } f_{n}^{o} = f_{n} \})$ such that
(i) $\{ \int_{n}^{2} 1 \}$ is a subsequence of $\{ f_{n}^{i} \} , \forall j = 0, 1, 3^{-1}$
(ii) $\{ f_{n}^{i}(z_{1}) \} , \{ f_{n}^{i}(z_{2}) \} , \cdots , \{ f_{n}^{i}(z_{j}) \} \}$
are conversent $(j \ge 1)$
 $f_{1}^{i} = f_{2}^{i} = f_{3}^{i} + \cdots + f_{n}^{i} + \cdots + f_{n}$

Define $g_n = f_n^n$, $\forall n \ge 1$. (the diagonal sequence) then Ign's is a subsequence of Ifn's and for any fixed j=1,2,..., $g_{n}(z_{j}) = f_{n}^{n}(z_{j})$ As n > 00, n > j for sufficiently large n. Home $[f_n(z_j) \lesssim is a subsequence of$ the convergent sequence (fi(zi)) & fa all sufficiently large n. Therefore 19n(Zj) is conveyent. This completes the proof of the Lomma.X (This method of funding In is called Cantor's diagonal trick. >