MATH3060 HWG Due date: Nov 13, 2020 (at 12:00 noon)

(1) Let $f: \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0)=0$, $f'(x_0)\neq 0$. Show that there exists p>0 such that $T\chi = \chi - \frac{f(\chi)}{f'(\chi)}, \quad \chi \in (\chi_0 - \rho, \chi_0 + \rho)$ is a contraction. (This is the Newton's method.) (2) Consider the function $f = \mathbb{R} \gg \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{1}{2}x + x^{2}\sin\frac{1}{2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ Show that f is differentiable at x=0 with $f(0)=\frac{1}{2}$, but it has no local inverse at x=0. Does it contradict the inverse function therein?

(Con't on next page)

(3) let a > 0, define a mapping $T: CEa, a] \rightarrow CEa, a]$ by $Tx(t) = 1 + S_{o}^{t}x(s)ds$. Let x(t) = 1 on E-a, a]Find $T^{n}x$, $\forall n \ge 0$. Does $\{T^{n}x\}$ converge in (CEa, a], drop)? If so, what is the limit?

(4) Let a > 0, define a mapping $T: CEa, a] \rightarrow CEa, a]$ by $Tx(t) = 1 + \int_{0}^{t} s x(s) ds$. Let $x(t) \equiv 1$ on E-a, a]Eind $T^{n}x$, $\forall n \ge 0$. Does $\{T^{n}x\}$ converge in (CEa, a], dw)? If so, what is the limit?

(End)