Proof of Frand-Lindelöf Thenem: Fa a's a to be chosen later, we let $X = \left\{ \phi \in \mathbb{C}[\text{t}_0-a', \text{t}_0+a'] : \phi(\text{t}_0) = X_0, \phi(\text{t}) \in [X_0-b', X_0+b] \right\}$ with (unifam) metric do on X . F and that X is closed subset in the complete metric space (C[to-a' tota'], dos). Heme (\mathbb{Z},d_{∞}) is couplete. Refûne T an X by $(\top \varphi)(\theta) = \chi_{c} + \int_{\tau_{n}}^{\tau} f(s, \varphi(s)) ds$ $(\forall h$ ù so well-defaired as $\varphi(s) \in [x_0 \cdot b, x_0 \cdot b]$]) $\top \phi \in \mathsf{C[t_0^{\bullet}a', t+a']}\mathrel{\mathop{\rm \mathcal{A}_{}}} \big(\top \phi\big)(\mathord{\mathop{\rm \mathbf{t}}}_{\!\!\!{\scriptscriptstyle\circ}}\!\!)\mathord{\mathop{\rm =}} X_0\,.$ Clearly To show $\tau\varphi \in \mathbb{X}$, we need

 $(\text{Tr} \phi)(\text{Tr} \in \text{Ex}_{\sigma} \text{Tr} \times_{\sigma} \text{Tr} \text{Tr}.$

Let $M = \sup_{(xx) \in R} |f(t,x)|$. Them & IE[Io-a' Io+a'], $|(T\phi)(t)-x_{0}|=|\int_{4}^{t}f(s,\phi(s))ds|$ $\leq M$ $|++$ \leq Ma[']

If we choose $0 < a' \leq \frac{b}{M}$, then $|\left(\sqrt{\varphi}(t)-x_0\right)| \leq b$ \Rightarrow $\tau \varphi \in \Sigma$. This is, for $0 < \alpha' \leq \frac{b}{M}$, $T: X \rightarrow X$ is a self-map from a complète metric space (8, des) to itself.

To see whether
$$
T
$$
 is a contraction, the check
\n
$$
\begin{aligned}\n\left| \left(T \varphi_{2} - T \varphi_{1} \right) (t) \right| &= \left| \left(X_{0} t \int_{t_{0}}^{t_{1}} f(s, \varphi_{2}(s)) ds \right) - \left(X_{0} t \int_{t_{0}}^{t_{1}} f(s, \varphi_{1}(s)) ds \right) \right| \\
&\leq \int_{t_{0}}^{t_{1}} \left| f(s, \varphi_{2}(s)) - f(s, \varphi_{1}(s)) \right| ds \\
&\leq \bigcup_{t_{0}}^{t_{1}} \left| \left(\varphi_{2}(s) - \varphi_{1}(s) \right| ds \quad \left(\log \lim_{t \to \rho_{1}} \text{and} \lim_{t \to \rho_{2}} \right) \right| \\
&\leq \bigcup_{t \to \infty}^{t_{1}} \left| \left(\varphi_{2}(s) - \varphi_{1}(s) \right| ds \right| \\
&\leq \bigcup_{t \to \infty}^{t_{2}} \left| \left(\frac{1}{2} \log \left(\frac{1}{2}
$$

$$
\leq \mu \alpha' d_{\infty}(\varphi_{\geq}, \varphi_{1})
$$

Therefore, if we further require $La'=\gamma < 1$, then T is a contraction: $d_{\infty}(\tau\varphi_{2},\tau\varphi_{1})\leq\gamma d_{\infty}(\varphi_{2},\varphi_{1})$ with $\gamma = \lfloor a' < 1 \rfloor$.

In conclusion,
\n
$$
0 < 0' < \pi
$$
 in $\{0, \frac{b}{M}, \frac{1}{L}\}$, then
\n $T: \times \gg \mathbb{Z}$ is a contraction on a complete metric
\n $4^{a}0$. Theorem by Caitraction Mopping Fràuùple
\n T adults a unique fixed point \times (π) $\in \mathbb{X}$.
\n R_1 Prop3.11, in the proof of T_1 in \mathbb{Z} 10.

Notes : ^l Existence partofPicard LindelofThan still $holds$ with $f(t,x)$ its only $(white + Lip.cuditia)$ However, the solution may not be unique

$$
\begin{array}{lll}\n\hline \n\mathcal{Q} &= \text{Cmsider} & f(4,X) = |X|^{1/2} \text{ on } \mathbb{R} \times \mathbb{R} \\
& \text{for } x \in \mathbb{R} \\
& \text{Cowley Problem} & \frac{dx}{dt} = |X|^{1/2} \text{ on } \mathbb{R} \\
& \text{Cowdy Problem} & \frac{dx}{dt} = |X|^{1/2} \text{ on } \mathbb{R} \\
& \text{Now, } \frac{dx}{dt} = 0 \text{ when } \frac{dx}{dt} = 0 \\
& \text{Now, } \frac{dx}{dt} = \frac{1}{2} \times 1^2 = 0 \\
& \text{Now, } \frac{dx}{dt} = \frac{1}{2} \times 1^2 = 0 \\
& \text{Cowly Problem} & \text{We have} & \frac{dx}{dt} = \frac{1}{2} \times 1 \\
& \text{We have} & \frac{dx}{dt} = \frac{1}{2} \times 1^2 = 0 \\
& \text{Cowly Problem} & \text{We have} & \frac{dx}{dt} = \frac{1}{2} \times 1^2 = 0 \\
& \text{We have} & \text{We have}
$$

(2) Uniqueness holds repardless of the size of the interval of existence Proofomitted as it is more on the curriculum of ODE See Prof Chou's notes for ^a proof

(3) The proof walks fa system of ODEs, just
\nthe X and S become beta-valued:
\n
$$
Im3.13
$$
 ($\frac{Picard - Lindulöf Theorum fra Systems)$
\n $Cosidur$ (LVP) $\frac{dx}{dt} = f(t,x)$
\n $xc(t_0) = xo$, $x_0 = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_n \end{pmatrix}$
\nwhere $x dt = \begin{pmatrix} x_1(t_0) & x_2(t_0) & x_1(t_0) & x_2(t_0) & x_2(t_$

(4) The Picard-Lindelöf Theorem for System can be applied
\nto initial value problem for higher order adding
\ndiffenedial equations :
\n
$$
\frac{d^{mx}}{dt^m} = f(t, x, \frac{dx}{dt}, \dots, \frac{dx^{n-1}}{dt^{n-1}})
$$
\n
$$
(IVP) \begin{cases}\n\frac{d^{mx}}{dt^m} = f(t, x, \frac{dx}{dt}, \dots, \frac{dx^{n-1}}{dt^{n-1}})\n\frac{d^{nx}}{dx}(t_0) = x_1 \\
\frac{d^{nx}}{dx}(t_0) = x_1 \\
\frac{d^{nx}}{dx}(t_0) = x_{n-1}\n\end{cases}
$$
\nBy letting $\vec{x} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt$

Ch4	Space of Continuous Functions
\$4.1	Ascol's Thenum
Notation : If $(\mathbb{X}, d) = \text{metrics space}$, we denote	
$C_b(\mathbf{X}) = \{ f \in C(\mathbb{X}) : H(\mathbf{X}) \leq M, \forall x \in \mathbb{X}, f_n \text{ and } M \}$	
Ha welta space of all bounded continuous functions}	
on \mathbb{X} . Clearly $C_b(\mathbb{X}) \subset C(\mathbb{X})$.	
$(C(\mathbb{X}) = \text{set of continuous functions } \mathbb{X}$.)	
eg. If $G = \text{bounded open set } \mathbb{X} \cap \mathbb{X}$, then	
$C_b(\mathbb{G}) = C(\mathbb{G})$	
$\text{a} = \overline{G} \quad \text{b} \quad \text{closed and bounded} \quad f \in C(\mathbb{G})$	
the the bounded.	

ecall that: A noun II . Il on a real vector space Δ is defined by the following properties:

$$
(N) \quad ||x|| \ge 0 \quad \& \quad \text{if } |x|| = 0 \iff x = 0 \text{ (iv)}
$$
\n
$$
(N2) \quad ||x|| = |x|| |x|| \quad (d \in \mathbb{R})
$$
\n
$$
(N3) \quad ||x|| = ||x|| + ||y||
$$
\nAnd a vector space with nonu. $(X, ||\cdot||) = 0$ called
\n α nonu space, $d(x, y) = |x - y||$.
\n
$$
d(x, y) = |x - y||
$$
\n
$$
\frac{d}{dx} \cdot \
$$

Prop = $(C_{b}(\mathbf{X}), d_{\infty})$ is complete. $(f_{\mathbf{A}}$ any white. φ as (\mathbf{X}, d) \n
If = let $\{\hat{f}_n\}$ be a Cauchy seg. $\tilde{u}_n(C_{b}(\mathbf{X}), d_{\infty})$
Then $\forall \hat{E} > 0$, $\exists n_0 \ge 0$ s.t.
$1. \oint_{m} - \hat{f}_n _{\infty} < \frac{\epsilon}{4}$, $\forall m, n \ge 0$
$\exists n$ pathcular, $\forall x \in \mathbb{X}$,
(\star) $\{\hat{f}_n(x) - \hat{f}_n(x)\} \le f_{m} - f_{n} _{\infty} < \frac{\epsilon}{4}$, $\forall m, n \ge 0$
$\Rightarrow \{\hat{f}_n(x)\}$ is a Cauchy seg. $\tilde{u}_n \in \mathbb{R}$
$\exists y$ \underline{c} \underline{c} \underline{d} \underline{d} \underline{d} \underline{d} \n
$\exists y$ \underline{c} \underline{d} \underline{d} \underline{d} \underline{d} \n
\underline{d} \underline{d} \underline{d} \underline{d} \underline{d} \n
$\exists y$ \underline{d} \underline{d} \underline{d} \underline{d} \n
\underline{d} \underline{d} \underline{d} \underline{d} \n
\underline{d} \underline{d} \underline{d} \underline{d} \n

Claurill	f	bounded
PS: Lilling m>so in (*)1, we have		
$\forall \epsilon > 0$, and $\forall \tau \in \mathbb{X}$,		
(*)	$ f(x) - f_n(x) \leq \frac{\epsilon}{4}$, $\forall n \geq n_0$	
In particular,	$ f(x) - f_n(x) \leq \frac{\epsilon}{4}$, $\forall \epsilon > 0, \forall x \in \mathbb{X}$.	
On particular,	$ f(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f_n(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f_n(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f_n(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	
When	$ f_n(x) \leq \frac{\epsilon}{4} + f_n(x) \leq \frac{\epsilon}{4} + M_0$,	

then together with (#)2, $|f(x) - f(x_0)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(x_0)| + |f_{n_0}(x_0) - f(x)|$

$$
\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon, \quad \forall d(x,x_0) < \delta.
$$
\n
$$
\Rightarrow \quad \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon, \quad \forall d(x,x_0) < \delta.
$$
\n
$$
\frac{\Gamma_{\text{data}}(1) \pm (2)}{\Gamma_{\text{data}}(2)} \Rightarrow \quad \frac{\epsilon}{4} \in C_b(\mathbb{X}).
$$
\n
$$
\frac{\Gamma_{\text{data}}(1) \pm (2)}{\Gamma_{\text{avg}}(1)} \Rightarrow \quad \frac{\epsilon}{4} \in C_b(\mathbb{X}).
$$
\n
$$
\frac{\Gamma_{\text{data}}(1) \pm \Gamma_{\text{avg}}(1)}{\Gamma_{\text{avg}}(1)} \Rightarrow \quad \frac{\Gamma_{\text{avg}}(1)}{\Gamma_{\text{avg}}(1)} \Rightarrow \quad \frac{\Gamma_{\text{avg}}(1
$$

495: When
$$
\overline{x} = \mathbb{R}^n
$$
 as subset with non-empty initial

\n5. Find \mathbb{R}^n .

\n5. Evaluate \mathbb{R}^n .

\n6. Using the formula $\int x^n y^n = e^{-(y^2)}$.

\n7. Suppose $\int x^n y^n = e^{-(y^2)^2}$.

\n8. Suppose $\int x^n y^n = e^{-(y^2)^2}$.

\n9. Suppose $\int x^n y^n = e^{-(y^2)^2}$.

\n1. Suppose $\int x^n y^n = e^{-(y^2)^2}$.

\n2. Suppose $\int x^n y^n = e^{-(y^2)^2}$.

(iii)
$$
C_9(\mathbb{Z})
$$
 could be of finite dimensions:
\n $eg: \mathbb{Z} = \{p_1, \dots, p_n\} \neq \overline{a} \text{ if } e \text{ set with cluster matrix}$
\n $\overline{d} \rightarrow \mathbb{R}^n$ $\overline{d} \rightarrow a$ linear
\n $\overline{f} \mapsto (\overline{f}(p_1), \dots, \overline{f}(p_n))$ bijecties.

 (iv) A reason for studying $C_b(\mathbf{X})$ instead of $C(\mathbf{X})$ is the fact that CCA may contain unbounded function and sup nam k Ihs doesn't define $eg: X = \mathbb{R} = (-\infty, +\infty)$. However, in some cases, we still preible to define a metrix on CLX

$$
\frac{log}{X} = \frac{1}{100} \Rightarrow log_{100} = \frac{1}{100} \times 10^{-1} = 1.33...
$$
\n
$$
W + C(R^{n}) = log_{100}
$$
\n
$$
d(G, G) = \frac{log}{100} \frac{1}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log}{100} \frac{1}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{100} \cdot R_{n}(0)}{1 + 115 - 91log_{100} \cdot R_{n}(0)} = 0
$$
\n
$$
d(G, G) = \frac{log_{10} \
$$

In view of note (V), we need further condition to
fully us to find comveging sequence in subset
of
$$
G(X)
$$
.
Def: let (X,d) be a metric space. A set $E \subset X$

 \sim

is called ^a precompact set if every sequence in E contains ^a convergent subsequent faith limit in ^I notnecessary inE If further required that the limit belongs to ^E then it is called compact

Note: Compact set is a closed precompact set.
\n
$$
\begin{array}{rcl}\n\text{P1:} & \text{Let } \{X_n\} \subset \in \\
& \text{E } \text{precompact} \Rightarrow \exists X_{n_{\hat{j}}} \Rightarrow z \in X \\
& \text{E } \text{closed} \Rightarrow z \in \in \\
& \text{Heucl} \text{ closed precompact} \Rightarrow \text{Coupad.} \\
& \text{The other direction: } \text{Compat} \Rightarrow \text{closed precompact} \text{ is trivial.}\n\end{array}
$$

$$
\underline{\hspace{2cm}} \underline{\hspace{2cm}} : \begin{array}{l}\nB \circ \underline{\hspace{2cm}} \underline{\hspace{2cm}} \otimes \underline{\hspace{2cm}} \end{array} \begin{array}{l}\n\text{Luler-Weierstrass} \Rightarrow \\
E \subset \mathbb{R}^{n} \text{ is } parameter \iff E \text{ is bounded.} \\
\text{Haux } E \subset \mathbb{R}^{n} \text{ is } compact \iff E \text{ is closed } \in \text{bounded.}\n\end{array}
$$

$$
\begin{array}{lll}\n\text{Def}: \text{Let } (X,d) \text{ be a metric space. A subset } C \text{ of } \\
 & C(X) \text{ is equivalence} \text{ if } \forall s > 0, \exists \delta > 0 \text{ such that } \\
 & |f(x)-f(y)| < \xi, \forall f \in C \text{ is } d(x,y) < \delta \left(x, y \in X\right)\n\end{array}
$$

Note: Clearly if
$$
\epsilon
$$
 is equications, then any ϵ ' ϵ δ equications.

Eg: If
$$
X = \overline{G} \subset \mathbb{R}^n
$$
, G^* open a bounded. Then
\n $\Rightarrow \in C(\overline{G})$ is always uniformly continuous:
\n $\forall \epsilon > 0, \exists \delta > 0$ s.t.
\n $|f(x)-f(y)| < \epsilon$, $\forall d_{\mathbb{R}^n}(x,y)=|x-y| < \delta$ (xyeq)
\nThe δ there usually depends on $\frac{1}{2}$.
\nConparing the algebraitan of equicativity,

$$
C_{i,j}
$$

$$
C_{i,j}
$$

$$
Y = \{f \in C(G) : f \mapsto H_0^{\circ} | \text{der} / L_0, \text{with exponential } \alpha \}
$$

is an equicontinuous family.

$$
\begin{aligned}\n\text{Pf} &= \forall \epsilon > 0, \text{ let } \delta > 0 \text{ such that } L\delta^d < \epsilon \\
\text{Then } \forall f \in \mathcal{E} \text{, } \forall x, y \in \mathbb{X} \text{ with } |x-y| < \delta \\
|\text{If } |x| > \text{f}(y) | \leq L |x-y|^\alpha < L\delta^d < \epsilon \\
\text{where } \forall x, y \in \mathbb{X} \text{ and } |x-y| < \delta\n\end{aligned}
$$

Property:	Let E be a subset $C(G)$ where G is a
(normal)	convex in IR ⁿ . Suppose that each function in
(bound)	to G is differentiable and there is a uniform
bound on their partial derivatives.	(S or some M ¹)
The E is equivalentiable, $ S$ is E	
(i) $C = \{f \in C(G): f \text{ differentiable, } S$ is M if S	
(ii) $C = \{f \in C(G): f \text{ differentiable, } S$ is M if S	
iv, S is equivalent to G is M if S	

$$
\begin{array}{rcl}\n\overrightarrow{Pf} & \forall & x,y \in \overline{G}, & \overline{G} \quad \text{CMWex} \\
& \Rightarrow & x + x(y-x) \in \overline{G}, & \forall x \in \overline{IQ} \text{ 1J.} \\
\text{Thus} & \text{f(y)} - \text{f(x)} = \int_{0}^{1} \frac{dy}{dx} f(x + t(y-x)) dx\n\end{array}
$$

$$
= \int_{0}^{1} \sum_{\tau=1}^{n} \frac{\partial f}{\partial x_{\tau}}(x + t(y - x))(y_{\tau} - x_{\tau})dt
$$
\n
$$
= \sum_{x=1}^{n} \left(\int_{0}^{1} \frac{\partial f}{\partial x_{\tau}}(x + t(y - x))dx \right) (y_{\tau} - x_{\tau})
$$
\n
$$
\leq \sqrt{\frac{a}{\tau-1}} \left(\int_{0}^{1} \frac{\partial f}{\partial x_{\tau}}(x + t(y - x))dt \right)^{2} \quad |y - x|
$$
\n
$$
\leq \sqrt{\pi} M |y - x|, \text{ where } M = \text{unif and bd.}
$$
\n
$$
a_{1} + b_{2} \text{ partial derivatives}
$$
\n
$$
a_{2} + b_{2} \text{ is equivalent to } a_{2} \text{ with } a_{1} + b_{2} \text{ and } a_{3} \text{ is equivalent to } a_{3} \text{ with } a_{4} + b_{5} \text{ with } a_{5} \text{ and } a_{6} \text{ is equivalent to } a_{7} \text{ with } a_{8} \text{ and } a_{9} \text{ is equivalent to } a_{9} \text{ with } a_{1} + a_{2} \text{ is equivalent to } a_{1} + a_{2} \text{ with } a_{1} + a_{3} \text{ is equivalent to } a_{1} + a_{4} \text{ with } a_{5} \text{ is equivalent to } a_{6} \text{ with } a_{7} + a_{7} \text{ is equivalent to } a_{7} \text{ with } a_{8} + a_{9} \text{ with } a_{1} + a_{9} \text{ with } a_{1} + a_{1} \text{ with } a_{1} + a_{1} \text{ with } a_{1} + a_{1} \text{ with } a_{1} + a_{2} \text{ with } a_{1} + a_{3} \text{ with } a_{1} + a_{4} \text{ with } a_{1} + a_{5} \text{ with } a_{6} + a_{7} \text{ with } a_{7} + a_{8} \text{ with } a_{9} + a_{1} \text{ with } a_{1} + a_{2} \text{ with } a_{1} + a_{3} \text{ with } a_{1} + a
$$