Proof of Picard-Lindelöf Thenem: For a'>0 to be chosen later, we let $\Sigma = \{\varphi \in C[t_0 - a', t_0 + a']: \varphi(t_0) = X_0, \varphi(t) \in [X_0 - b, X_0 + b]\}$ with (unifam) metric dos on Z. First note that X is closed subset in the complete metric space (C[to-a', total, dos). Here (Z, do) à complete. Refine Ton X by $(\tau \varphi)(d) = \chi_0 + \int_{d_n}^{d_n} f(s, \varphi(s)) ds$ (This is well-defined as $\varphi(s) \in [X_0-b, X_0+b]$.) $T\varphi \in C[t_0 - \alpha', t + \alpha'] \& (T\varphi)(t_0) = X_0.$ Clearly To show TQEX, we need

 $(T\phi)(t) \in [x_0 - b, x_0 + b].$

Let $M = \sup_{\substack{(x,x) \in \mathbb{R}}} |f(t,x)|$. Then $\forall t \in \mathbb{I}$ to $-a', t_0 + a'J$, $|(T\varphi)(t) - x_0| = |\int_{t_0}^t f(s,\varphi(s))ds|$ $\leq M |t_0 - t_0|$ $\leq M a'$

If we choose $0 < a' \leq \frac{b}{M}$, then $\left| (T\phi)(t) - x_0 \right| \leq b$ $\Rightarrow \quad T\phi \in X$. This is, for $0 < a' \leq \frac{b}{M}$, $T: X \Rightarrow X$ is a self-map from a complete metric space (X, des) to itself.

To see whether
$$T$$
 is a contraction, we check
 $\left| \left(T \varphi_2 - T \varphi_1 \right) (t;) \right| = \left| \left(X_0 t \int_{t_0}^t f(s, \varphi_2(s)) ds \right) - \left(X_0 t \int_{t_0}^t f(s, \varphi_1(s)) ds \right) \right|$
 $\leq \int_{t_0}^t \left| f(s, \varphi_2(s)) - f(s, \varphi_1(s)) \right| ds$
 $\leq \int_{t_0}^t \left| \left(\varphi_2(s) - \varphi_1(s) \right) \right| ds \quad (by \text{ Lip. condition})$
 $\leq L |tt-t_0| \sup_{E_0} \left| \left(\varphi_2(s) - \varphi_1(s) \right) \right|$

$$\leq L \alpha' d_{\infty}(\varphi_{2}, \varphi_{1})$$

Therefore, if we further require La' = v < 1, then T is a contraction: $d_{\infty}(TP_2, TP_1) \leq v d_{\infty}(P_2, P_1)$ with v = La' < 1.

In conclusion,
if
$$0 < 0' < \min\{a, \frac{b}{M}, \frac{1}{L}, \xi\}$$
, then
 $T: X \gg X$ is a cartraction on a complete metric
space. Therefore, by Contraction Mapping Trinciple,
T admits a unique fixed paint X12>6 X.
By Bop3.11, we're proved Thm 3.10. X

Notes: (1) Existence part of Picard-Lindelöf Thm still holds with f(t,x) its only (without Lip. condition) However, the solution may not be migue:

$$\frac{Q}{2} : (\text{msider } f(t, X) = |X|^{\frac{1}{2}} \text{ on } |\mathbb{R} \times |\mathbb{R}|$$

$$f \text{ is oth, but not Lip. cts.}$$

$$((\text{Cauchy Problem})) \int \frac{dx}{dt} = |X|^{\frac{1}{2}} \text{ on } |\mathbb{R}|$$

$$((\text{Cauchy Problem})) \int \frac{dx}{dt} = |X|^{\frac{1}{2}} \text{ on } |\mathbb{R}|$$

$$(x_{0}) = 0$$

$$\text{has solutions } x_{1}(t) = 0 \quad \forall t \in |\mathbb{R}| \text{ and}$$

$$(X_{2}(t)) = \int \frac{1}{4}t^{2}, \quad t \geq 0$$

$$(-\frac{1}{4}t^{2}, \quad t \leq 0)$$

$$(\text{check: } X_{2} \text{ is differentiable with } \frac{1}{4}t^{2} = \frac{1}{2}|t|, \quad \forall t \in |\mathbb{R}|$$

$$= |X_{2}|^{\frac{1}{2}}$$

(Z) Uniqueness holds repardless of the size of the interval of existence. (Proof omitted as it is more in the curriculum of ODE. See Prof Churis notes for a proof.)

(3) The proof waks for system of ODEs, just
the x and f become vector-valued:
TIm3.13 (Picard-Lindelöf Theorem for Systems)
Consider (IVP) {
$$dx = f(t,x)$$

 $x(t_0) = x_0$, $x_0 = \begin{pmatrix} x_1 \\ \vdots \\ x_1(t_0) \end{pmatrix} \in [x_1 \cdot b, x_1 t_0] \times \cdots \times [x_n \cdot b, x_n t_0]$
where $x(t_0) = \begin{pmatrix} x_1(t_0) \\ \vdots \\ x_n(t_0) \end{pmatrix} \in [x_1 \cdot b, x_1 t_0] \times \cdots \times [x_n \cdot b, x_n t_0]$ and
 $f(t,x) = \begin{pmatrix} t_1(t,x) \\ \vdots \\ f_n(t,x) \end{pmatrix} \in C^1(R)$, with
 $R = [t_0 \cdot a, t_0 + a] \times [x_1 \cdot b, x_1 t_0] \times \cdots \times [x_n \cdot b, x_n t_0]$,
saliofying (Lipschitz condition (uniform in t))
 $If(t,x) - f(t,y) \le L(X-y]$, $\forall (t,x), (t,y) \in R$,
for some constant $L > 0$.
There exists a unique solution $x \in C^1[t_0 - a', t_0 + a']$
 idh
 $x(t_0) \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\forall t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b] \times \cdots \times [x_n \cdot b, x_n + b]$, $\exists t_0 \in [x_1 \cdot b, x_1 + b]$

(4) The Pitard-Lindelöf Theorem for System can be applied
to unitial value problem for higher order ordinary
differential equations :

$$\begin{pmatrix} \frac{d^{M}x}{dt^{m}} = f(t, x, \frac{dx}{dt}, \cdots, \frac{d^{M-x}}{dt^{m-1}}) \\ x(t_{0}) = x_{0} \\ \frac{dx}{dt}(t_{0}) = x_{1} \\ \vdots \\ \frac{d^{M'x}}{dt}(t_{0}) = x_{m-1} \\ By letting \vec{x} = \begin{pmatrix} x \\ \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{dx^{m}}{dt^{m'x}} \end{pmatrix}_{i} then
$$\frac{d\vec{x}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \vdots \\ \frac{dx^{m}}{dt^{m'x}} \end{pmatrix}_{i} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \end{pmatrix}_{i} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \end{pmatrix}_{i} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \\ \frac{dx}{dt^{m'x}} \end{pmatrix}_{i} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{dx}{dt^{m'x}} \\ \frac{d$$$$

Ch4 Space of Cartinuous Functions
§4.1 Ascoli's Theorem
Notation: If
$$(X, d) = metaic space, we denote$$

 $C_b(X) = \langle f \in C(X) := H(x) | \leq M, \forall x \in X, fnsom M \rangle$
the vector space of all bounded contained functions
on X. Clearly $C_b(X) \subset C(X)$.
 $(C(X) = set of continuous functions on X.)$
 $(nonempty)$
eg: If $G = bounded$ open set in \mathbb{R}^n , then
 $C_c(G) = C(G)$
as G is closed and bounded, $f \in C(G)$
thus to be bounded.

Recall that: A norm II. II on a real vector space X is defined by the following properties:

(NI)
$$||\mathbf{x}|| \ge 0 \ \ensuremath{\mathbb{R}}^n$$
 (NZ> $||\mathbf{a}\mathbf{x}|| = |\mathbf{a}| ||\mathbf{x}|| \quad (\mathbf{a}\in \mathbb{R})$
(NZ> $||\mathbf{a}\mathbf{x}|| = |\mathbf{a}| ||\mathbf{x}|| \quad (\mathbf{a}\in \mathbb{R})$
(NZ) $||\mathbf{x}+\mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
And a vector space with noun (Z, ||·||) is called
a noun space.
A noun space has a natural metric
 $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.
Fact: The supnorm $||\mathbf{f}||_{\infty} = \sup_{\mathbf{x}\in \mathbf{X}} |\mathbf{f}(\mathbf{x})|$
is a noun on $C_b(\mathbf{X})$.
And we always assume $C_b(\mathbf{X})$ with metric
 $d_{\infty}(\mathbf{f}, \mathbf{g}) = ||\mathbf{f} - \mathbf{g}||_{\infty}$.
given by the supnam.
Sumilar to (C[a,b], dw), we have

$$\begin{array}{l} \overrightarrow{\operatorname{Prop}} &= \left(\left(\begin{smallmatrix} ({}_{b}(X), d_{on}\right) \stackrel{}{\Rightarrow} \operatorname{complete} \left(\begin{smallmatrix} f_{u} \operatorname{any} \operatorname{nutlice}_{(X,d)}\right) \\ \overrightarrow{\operatorname{Pf}} &= \operatorname{let} \left\{ f_{h} \right\} \stackrel{}{\text{be}} a \operatorname{Cauchy} \operatorname{seg.} \overrightarrow{u} \left(\left(\begin{smallmatrix} ({}_{b}(X), d_{on}\right) \\ &= \operatorname{Then} \left\{ f_{h} \right\} \right\} \stackrel{}{\text{be}} a \operatorname{Cauchy} \operatorname{seg.} \overrightarrow{u} \left(\left(\begin{smallmatrix} ({}_{b}(X), d_{on}\right) \\ &= \operatorname{Then} \left\{ f_{h} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left(f_{n} \right) \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \left\{ f_{n} \right\} \right\} \right\} \stackrel{}{\text{on}} \left\{ f_{n} \left\{ f_{n}$$

Then together with $(t)_{2}$, $|f(x) - f(x_{0})| \leq |f(x) - f_{n_{0}}(x)| + |f_{n_{0}}(x_{0}) - f_{n_{0}}(x_{0})| + |f_{n_{0}}(x_{0}) - f(x_{0})|$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} < \varepsilon, \quad \forall d(x, x_0) < \delta.$$

... fix at x o.
Since xo $\in X$ is arbitrons, fix do on X .
 $Clairs(1) \ge (2) \implies f \in C_b(X)$.
Fixally, by $(\pm)_2$, $\sup_{x \in X} |f(x) - f_n(x)| \le \frac{\varepsilon}{4}$, $\forall n \ge n_0$
i.e. $d_{\infty}(f_n, f) \le \frac{\varepsilon}{4}$, $\forall n \ge n_0$
So $d_{\infty}(-f_n, f) \rightarrow 0$ as $n \rightarrow \infty$
That is $f_n \Rightarrow f$ in $(C_b(X), d_n)$.
Notes: (i) we've just proved that $(C_b(X), d_\infty)$
is a Bawach space, i.e. a couplete
normed vector space.
(i) $C_b(X)$ is usually of infinite dimensional:

egs: When
$$X = IR^n$$
 a subset with non-empty interior
in R^n .
Explicit eg: $X = [0, 1] \subset R$, then $\{x^n\}_{n=0}^{\infty} \subset C_b(x)$.
Clearly, $\{x^n\}_{n=0}^{\infty}$ is a linearly indep. subset.
 $\Rightarrow C_b(X) = C[0, 1]$ is of infinite dimensional

(iii)
$$G_{b}(X)$$
 could be of finite chinension:
 $eg: X = \{p_{1}, \dots, p_{n}\}$ finite set with climete metric
Then $X \to \mathbb{R}^{n}$ is a linear
 $\int I \to (f(p_{1}), \dots, f(p_{n}))$ bijection.

(iv) A reason for studying (b(X) instead of (X) is the fact that ((X) may contain unbounded function and supnam 11.1100 doesn't define.
eg: X = (R = (-60, +00).
However, in some cases, we still precible to define a metrix on ((X).

$$\begin{split} & \underbrace{X} = [\mathbb{R}^{n}, \quad \overline{B}_{n}(0) = \int |X| \leq n \rbrace, \quad \forall n = 1, 2 \rbrace, \\ & \forall f \in C(\mathbb{R}^{n}), \quad dofine \\ & d(f, g) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|1f - g||_{(\alpha, \overline{B}_{n}(0))}}{1 + |1f - g||_{(n, \overline{B}_{n}(0))}}, \\ & \text{where } \| \cdot \|_{(\alpha, \overline{B}_{n}(0))} \text{ is the supmoun on the closed } \\ & \text{ball } \overline{B}_{n}(0). \\ & \text{Then } d \text{ is a complete mittic on } C(\mathbb{R}^{n}). \\ & \text{(v) } C_{b}(\mathbf{I}) \text{ may not these Bolzano - Weierstrass property,} \\ & \text{Recall: Bolzano - Weierstrass Theorem } (\overline{u}, \mathbb{R}^{n}): \\ & \text{every, bounded sequence (set) thas (cartains)} \\ & a \quad \text{convergent subsequence (sequence),} \\ & eg. \quad C_{b}([0,1]) = C[0,1]. \quad (et \quad f_{n}(x) = x^{n}, \quad x \in [0,1]. \\ & \text{Then } \|f_{n}\|_{\infty} = 1, \quad \forall n. \\ & \text{Note that policitarise limit } f_{n}(x) \rightarrow \begin{cases} 1, & x = 1 \\ 0, & \text{otherwise} \end{cases} \end{split}$$

eg: Bolzono-Weierstrass
$$\Rightarrow$$

ECRⁿ is precompact \Leftrightarrow E is bounded.
Hence ECIRⁿ is compact \Leftrightarrow E is closed a bounded.

Def: let
$$(X,d)$$
 be a neetric space. A subset C of
 $C(X) = squicentinuous$ if $\forall E>0$, $\exists \delta>0$ such that
 $|f(x) - f(y)| < E$, $\forall f \in C \approx d(x,y) < \delta(x,y \in X)$.

$$Pf = \forall \epsilon > 0, \text{ let } \delta > 0 \text{ such that } L\delta^{q} < \epsilon.$$

Then $\forall f \in \mathcal{E}, \forall x, y \in \mathbb{X} \text{ with } |x-y| < \delta,$
$$|f(x) - f(y)| \leq L |x-y|^{q} < L\delta^{q} < \epsilon.$$

$$Pf: \forall x, y \in G, G convex \Rightarrow x+t(y-x) \in G, \forall t \in I0,1].$$

Then $f(y) - f(x) = \int_{a}^{b} \frac{d}{dx} f(x+t(y-x)) dt$

$$= \int_{0}^{1} \sum_{i=1}^{n} \frac{\Im_{x_{i}}^{f}(x+t(y-x))(y_{i}-x_{i})dt}{\Im_{x_{i}}^{f}(x+t(y-x))dt}(y_{i}-x_{i})$$

$$= \sum_{i=1}^{n} \left(\int_{0}^{1} \frac{\Im_{x_{i}}^{f}(x+t(y-x))dt}{\Im_{x_{i}}^{f}(x+t(y-x))dt}\right)^{2} |y-x|$$

$$\leq \operatorname{In} M|y-x|, \text{ where } M = \operatorname{uni} fam bd.$$
on the portial derivatives
Then by the above example, Σ is equicantinuous.