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Concrete examples are omitted since it should be given

in advanced calculus already Afewexplicit
examples

are given in Prof
Chou's notes



83.4 Picard Lindelof Theorem for Differential Equations

let f be a function defined on

R to a Tota XExo b Xotb
where CtoXo C IR

Z

and a b o We consider Cauchy
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ie find a function Xlt defined in a perhaps smaller

interval X Ito al total Exo b Xotb
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Xfts is differentiable

XC to Xo and

daffCt fit XitD ft Cfto a total

for some o sa Ea
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Is It L is a hip constant fat then any L
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Thmelo Picard LindelofTheorem

Fundamental TheoremofExistenceandUniqueness of
Differential Equations

het f be continuous function on R Ito a to taxExobxotbf

CtoXD ERI a b o satisfies the Lipschitzcondition

on R uniform in t Then I al C Co a and

X E C Ito aftotag such that

X o b E X ft E Xot
b f t CEto A to tab

and solving the Cauchy Problem IV P

Furthermore X is the unique solution in Ito al total

Note Onewill see in the following proof that a
can be

taken to be any numbersatisfying

o sa e min la tu I
where
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L Lip const fa f



Prop3ill setting as in Thm3.10 everysolution of IVP

from Ito al total to Exo b Xotb satisfies

the equation x Xo Sefo fit dt 3 7

Conversely every ut C Cfto al tota's satisfying
3 7

is C and solves EVP

PI Obvious by
FundamentalTheoremof Calculus


