- 1. (Generalisation of Contraction Mapping Principle) let X be a complete metric space. And let $T: X \Rightarrow X$ be a continuous map such that the k-time composition Tk is contraction. Show that T has a unique fixed point.
- 2. Show that the equation $(20x + 2x^4 + x = 1.00)$ has a solution near x = 0.
- 3. Let A be an nxn symmetric motrix and $V \in \mathbb{R}^N$. Show that there exist r > 0 and R > 0 such that $\forall y \in \overline{B_R(0)} \subset \mathbb{R}^N$, there exists a unique $X \in \overline{B_R(0)} \subset \mathbb{R}^N$ such that $X = Y + (X^T A \times)V$.
- 4. Let $K(x,t) \in C([0,1] \times [0,1])$. Show that there exists $\lambda > 0$ such that for all $g \in C[0,1]$, there exists a unique solution $y \in C[0,1]$ of the integral equation $y(x) = g(x) + \lambda \int_0^1 K(x,t) y(t) dt$.

(End)