Ch3 The Contraction Mapping Principle

63.1 Complete Motric Spae

\n

265: Let (\mathbb{Z}, d) be a notire space.
(1) A sequence $\{x_n\}$ in (\mathbb{Z}, d) is a Cauchy sequence
10: If $\forall \epsilon > 0$, $\exists n_0$, s, \pm , $d(x_n, x_m) < \epsilon$, $\forall n, m \ge n_0$.
(2) (\mathbb{Z}, d) is complete if every Cauchy sequence in (\mathbb{Z}, d)
11: Convoys.
(3) A subset E is complete. (i.e. $d = d \epsilon \in$)
(4) i. a complex number of vertices in (\mathbb{Z}, d)
(5) A subset E is complete. (i.e. $d = d \epsilon \in$)
2. i.e. every Cauchy sequence in E converges with limit in E .
2. i.e. even $Cauchy$ sequence in E converges with limit in E .
3. i.e. even $Cauchy$ sequence in E converges with $dim H$ in E .

Prop 3.1	Let (X, d) be a metric spail.
(a) Every complete set \overline{u} X is closed.	
(b) $\overline{z}f \times \overline{x}$ is coupled, then every closed set \overline{u} X	
\overline{w} is complete.	

 $Pf: (a)$ let ECK_{2} E cauplete. Suppose $\{x_n\} \subset \overline{F}$ with $x_n \to \infty$ in \overline{X} .

By note, $1x_{n}$, ∞ cauchyseq. in E Then completeness of $E \Rightarrow x_n \Rightarrow z \in E$. Uniqueness of limit $\Rightarrow x = z \in E$ $\stackrel{\cdot}{\cdot}$ \in is closed.

(b) Let
$$
(\mathbb{X},d)
$$
 be complete $x \in \mathbb{R}$ closed in X .
Then every Cauchy seq . $\{x_1\} \in \mathbb{R}$ ∞ Cauchy
 $seq \in X$ a Caupletu $os \in X \Rightarrow \exists x \in X$,
 $st. x_n \Rightarrow x \in S^{\text{inc}} \in \mathbb{G}$ closed, $x \in E$.
 $\therefore \in \infty$ complete.
 \mathbb{X}

29^{3}	:= $(\mathbb{R}, \text{ standard})$ is complete
• $[a, b], (-\infty, b], [a, \infty)$ $(a \neq b)$	
• (a, b) (b, finite) not complete $(\cdot, x, -b, -\frac{1}{2} \Rightarrow b, \text{odd})$	
• (a, b) (b, finite) not complete $(\cdot, x, -b, -\frac{1}{2} \Rightarrow b, \text{odd})$	

293.2
$$
(\overline{X} = C[a,b], da)
$$
 is complete:

\n
$$
Cauchy \text{ seg } \{f_{n}\} \text{ in } da_{\infty} \text{ matrix}
$$
\n
$$
\Leftrightarrow \forall \epsilon > 0, \pm n_{\infty} \text{ s.t.}
$$
\n
$$
\max |S_{n}(x) - f_{m}(x)| < \epsilon, \forall n, m \geq n_{\infty}
$$
\n
$$
\lim_{x \to a} \text{ arg } \{f_{n}(x) - f_{m}(x)\} < \epsilon, \forall n, m \geq n_{\infty}
$$
\n
$$
\lim_{x \to a} \text{ arg } \{f_{n}(x) \Rightarrow f_{n}(x) \text{ and } f_{n}(x) \text{ is a sequence of } \text{arg } a \text{ and } a \text{ is a sequence of } \text
$$

3.5 Appendix Completion of ^a Metric space

$$
\boxed{\underline{\text{Def}}:\begin{array}{c}\text{A white space }(\mathbb{X},d) \text{ is said to be isomentially} \\ \text{embedded in white space }(\mathbb{Y},\beta) \text{ if } \\ \exists \text{ a mapping } \underline{\Phi}:\mathbb{X} \Rightarrow \overline{\gamma} \text{ s.t.} \\ d(x,y) = \rho(\Phi(x), \Phi(y)).\end{array}}
$$

Notes:
$$
\dot{C}
$$
.) $\overline{\Phi}$ is called an isometric embedding

\nFrom (\mathbf{x}, d) into $(\overline{\mathbf{y}}, \overline{\mathbf{y}})$. And something
\ncalled a matrix. preserving map.

\n(\dot{C}) $\overline{\Phi}$ must be one-to-one and continuous.

Def: Let (\mathbf{X}, d) and (\mathbf{Y}, ρ) be metric spaces.
We call (\mathbf{Y}, ρ) a completion of (\mathbf{X}, d)
if $(1) (\mathbf{Y}, \rho)$ is complete.
if $(2) \equiv$ isometric embedding $\Phi = (\mathbf{X}, d) \rightarrow (\mathbf{Y}, \rho)$
such that the closure $\overline{\Phi}(\mathbf{X}) = \mathbf{Y}$.

$$
\underline{a}_{\beta} : (\nabla_{,\rho}) = (\mathbb{R}, \text{standard}) \quad \Sigma = \mathbb{Q} \subset \mathbb{R}
$$
\n
$$
(\Sigma, d) = (\mathbb{Q}, \text{ induced which})
$$
\n
$$
\text{Then. } (\mathbb{R}, \text{standard}) \text{ is complete};
$$
\n
$$
\Phi = (\bigoplus_{\substack{u \text{ is induced multiple} \\ u}} \text{induced which}) \rightarrow (\mathbb{R}, \text{standard})
$$
\n
$$
\Phi = (\bigoplus_{\substack{u \text{ is closed}} \text{ in } \mathbb{R}} \text{ standard})
$$
\n
$$
\Rightarrow \overline{\bigoplus_{\substack{u \text{ is odd}} \text{ in } \mathbb{R}}} = \mathbb{R} \quad (\text{if } \varphi \text{ dense in } \mathbb{R})
$$

Thm3 Everymetricspacehas ^a completion

12f (Sket du of Proof)

\nLet
$$
(\mathbb{X}, d)
$$
 be matrix space.

\nLet $\mathcal{C} = \{ \langle x_n \rangle \subset \mathbb{X} = \{ x_n \} \text{ Caudy sequence } \}$

\nBefore equivalent relation $\sim m \leq b_y$

\n $\{ x_n \} \sim \{ y_n \} \iff d(x_n, y_n) \Rightarrow o \text{ as } n \Rightarrow \infty$

\nLet $\widetilde{\mathcal{C}} = \mathcal{C}/\mathcal{L}$ the quotient space.

225a

\n
$$
\begin{array}{rcl}\n\begin{aligned}\n &\text{226} \text{a} & \text{a} & \text{a} & \text{b} & \text{b} & \text{the following:} \\
 & \text{a} & \text{a} & \text{b} & \text{b} & \text{b} & \text{the following:} \\
 & \text{b} & \text{a} & \text{b} & \text{c} & \text{d} \\
 & \text{b} & \text{a} & \text{b} & \text{c} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{c} & \text{d} & \text{b} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{c} & \text{d} \\
 & \text{d} \\
 & \text{d} \\
 & \text{d} \\
 & \text{d} \\
 & \text{d} &
$$

embedding from (X,d) anto (X',d)

Notes: (1, the inverse of the bigective isonutric
\n-embedding & also an isometric embedding,
\n(15) Two matrix spaces will be regarded as
\nthe same, if they are isometric.

\nThus: If
$$
(T, \rho) \geq (T, \rho')
$$
 and (mp, ρ) and (T, ρ') are iometric.

\nLet $(T, \rho) \geq (T, \rho')$ and (T, ρ') are iometric.

\nLet (T, ρ') are iometric.

3,2 The Contraction Mapping Principle $Ref: (1) let (\lambda, d) be a metric span. A map$ $T: (X,d) \Rightarrow (X,d)$ is called a contraction if \exists constant $\gamma \in (0,1)$, such that $d(Tx, Ty) \leq Yd(x,y)$, $\forall x,y \in \overline{X}$. (e) A point $x \in X$ is called a fixed point of $T \dot{x}$ $T x = x$ (Veually we write Tx instead of $T(x)$)

Thm 3.3 (Contraction Mapping Principle) Every contraction in ^a complete metric space admit a <u>unique</u> fixed pont. This is also called the Banach FixedPoint Thm

$$
\begin{array}{lll}\n\text{If}: & \text{Uniqueness}: & \text{Suppac} & x \text{ a } y \text{ are fixed pts.} \\
& \text{of } T \quad \text{Then} \\
& \text{cl}(x,y) = d(Tx, Ty) & \text{for some fixed by} \\
& \text{if } x \text{ is odd} \\
&
$$

$$
\frac{Fy}{3}x_{n}^{2} = \frac{1}{2}x_{n}^{2} + x_{0}^{2} = \frac{1}{2}x_{n-1}^{2} + x_{n-2}^{2}
$$
\n
$$
\frac{Fy}{3}x_{n} = \frac{1}{2}x_{n}^{2} + x_{n}^{2} = \frac{1}{2}x_{n-1}^{2} = \frac{1}{2}x_{n-2}
$$
\n
$$
F = \frac{1}{2}x_{n} = \frac{1}{2}x_{0}^{2}.
$$

For any $n \geq N$, $d(x_n, x_N) = d(T^nx_0, T^Nx_0) = d(T^{(n-N)HN}x_0, T^Nx_0)$ = $d(T(T^{(n-N)+N-1}_{N_0}), T(T^{N-1}_{N_0}))$ $\leq \gamma$ d($\Upsilon^{(n-N)+N-1}$ \times , τ^{N-1} \times (where $\gamma \in (0,1)$ is the constant $s.t.$ d(γ , γ y) $\leq r$ d(γ y), $\forall x y \not\in \mathbb{Z}$)

 \leq $\leq \gamma^N$ d($T^{(n-N)}$ xo, xo) $\leq \gamma^N \int d(T^{(n-N)}x_{0},T^{(n-N)-1}x_{0}) + d(T^{(n-N)-1}x_{0},T^{(n-N)-2}x_{0})$ $+ \cdots + d(Tx_0, x_0)$ $\leq \gamma^N \mid d(\tau x_0, x_0) + \gamma d(\tau x_0, x_0) + \cdots$ + $\gamma^{(n-N)-2} d(Tx_0,x_0) + \delta^{(n-N)-1} d(Tx_0,x_0)$ $= \gamma^{\mathcal{N}} \int |+\gamma + ... + \gamma^{(n-\mathcal{N})-1} \int d(\tau_{x_0} x_0)$ $<\frac{\gamma^{\prime\prime}}{1-\gamma}\Delta(\tau_{x_{0},x_{0}})$ Therefoe, 4800 , if N>0 is chosen s.t. $\frac{1}{1-x}d(Tx_0,x_0)\leq \frac{2}{2}$ We have $\forall n, m \ge N$ $d(x_{n,x_{m}}) \leq d(x_{n,x_{N}}) + d(x_{N,x_{m}})$ $2 \frac{c}{2} + \frac{c}{2} = 2$. \therefore { x_n } is a Cauchy seg. in (\overline{X},d).

By completeness of (\mathbf{x},d) , \exists 2E \mathbb{X} s.f. $X_{\alpha} \rightarrow X$ Note that a contraction is always continuous (Ex.) we have $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_{n-1} = T \lim_{n \to \infty} x_{n-1} = Tx$. \therefore x is a fixed point of $T \cdot x$ eg 3.3 $T: (0,1] \rightarrow (0,1] (Cautian: (0,1] \text{ is not a positive})$ complete) Clearly $|Tx-Ty| = \frac{1}{2}(x-y)$ $Y=\frac{1}{2}<1$ \therefore \top is a cartraction. However, if $x \in (0, 1]$ is a fixed pait of T then $Tx = x \Leftrightarrow \frac{x}{2} = x \Leftrightarrow x = 0 \notin (0,1].$ \therefore T has no fixed paint on (0, 1]. This example shows that "completeness" is necessary in the Contraction Mapping Principle.

3.3 The Inverse FunctionTheorem Notation: Let $F = U \subset \mathbb{R}^n \Rightarrow \mathbb{R}^m$ be differentiable at a point ρ in an open set U of \mathbb{R}^n . We W Mte $F = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2}m \end{pmatrix}$ $\in \mathbb{R}$ where $g^{\lambda} = f^{\lambda}(x', y', x'') = U \implies R f^{\lambda} = f^{\lambda} f^{\lambda}$ Then F differentiable at $p_\theta = \begin{pmatrix} x'_\theta \\ \vdots \\ x^n \end{pmatrix} \in U \subset \mathbb{R}^n$

$$
F(P_{0}+Z)-F(P_{0}) = DF(P_{0})Z + o(Z)
$$

$$
\forall Z = \begin{pmatrix} \frac{Z}{2} \\ \frac{1}{Z}a \end{pmatrix} sufficiently small,
$$

 $\left(\mathcal{D}f(\rho_0)\mathcal{Z}\right)^{i_0}=\sum_{j=1}^{N}\frac{\partial f_{j}^{i}}{\partial x^{j}}(\rho_0)\mathcal{Z}^{\frac{1}{J}}\quad\forall i=j_{j}m.$