2.2 Open and closed sets $\mathbb{E}\left\{f : \mathsf{let}\left(\mathbb{X},\mathsf{d}\right)=\mathsf{natric}\ \mathsf{spac}\right\}$ A set $G \subset X$ is called an open set if $t \times \mathcal{L}G$, $\exists \underline{e>0}$ st. $\mathcal{B}_{\xi}(x) = (y \cdot d(xy) \cdot \xi)$ \subset G (The number E $>$ 0 may vary depending on \times) We also define the <u>empty set</u> \varnothing to be an open \bullet set

Prop24: left (X,d) be a metric space. We have
(a) X and Z are open sets.
(b) Avbitrary union of open sets.
U G_{α} , weA, in a collection of open set.
How $\bigcup_{\alpha \in A} G_{\alpha}$ is an open set.
(c) Finite integers of open sets, then $\bigcap_{\beta=1}^{\infty} G_{\beta}$.
is an open set.
is an open set.

Pf: cas Cliar (b) let $x \in \bigcup_{\alpha \in A} G_{\alpha}$ $\Rightarrow x \in G_{\alpha}$ for same $x \in A$. \Rightarrow = 220 s.t. $B_{\epsilon}(x)$ CG_{α} (Since G_{α} per) \Rightarrow $B_{\epsilon}(x) \subset \bigcup_{\alpha \in A} G_{\alpha}$ (C) Let $x \in \bigcap_{n=1}^{N} G_{n}$ => xEGi, Vj=1, V $\Rightarrow \exists \xi_j > 0 \text{ s.t. } B_{\xi_j^*}(x) < G_j \text{ , } \forall j \exists j \forall k$ Let $\varepsilon = min\{\varepsilon_1, \cdots, \varepsilon_N\} > 0$. Then $\mathbb{B}_{\epsilon}(x) \subset \mathbb{B}_{\epsilon_{\hat{i}}}(x) \subset G_{\hat{j}}$, $\forall \hat{j} = 1, \because N$ \Rightarrow $B_{\xi}(x)$ \subset $\bigcap_{j=1}^{\mathcal{N}} G_j$ $\underset{\chi}{\times}$

$$
\begin{array}{|l|l|}\n\hline\n\text{Ref: let (\mathbb{X},d) be a matrix space.} \\
A set F C B is called a closed set if the complement $\mathbb{X}\setminus F$ is an open set.\n\end{array}
$$

Prop2.5	let (8,d) be a metric space. We have
(a) z and \varnothing are closed sets.	
(b) Arbitrary- interaction of closed sets $\tilde{\varnothing}$ closed.	
$\tilde{\psi}$ F_{α} , $\alpha \in \mathcal{A}$, are closed sets, then $\underset{\alpha \in \mathcal{A}}{\int} \tilde{\varnothing}$ is closed.	
(c) \varnothing finite union of closed sets $\tilde{\varnothing}$ closed :	
$\tilde{\psi}$ $\$	

 $Note:$ $Prop 2.4$ & 2.5 \Rightarrow X \approx φ are both open 2 closed

 $QQ2.10$ (1) Every metric ball $B_r(x) = \{y \in \mathbb{X} : d(yx) < r\}$ (r>o) \int is an open set. r -d(xy) $H : \forall y \in B_k(x)$ (dcxy) Then $\epsilon = r - d(x,y) > 0$ $x \forall \forall \exists \epsilon \exists \epsilon(y)$ $d(z,x)\leq d(z,y)+dcyx$ $<$ ϵ + d(y, x) = r $B_{\varepsilon}(y) \subset B_{r}(x)$ $*$

(2) The set
$$
E = \{y \in X : d(y,x) > r\}
$$
 (fna fixed $x \in X$)
\n \therefore open and four
\n $X \setminus E = \{y \in X : d(y,x) \le r\}$ is closed.
\n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 0 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 0 \\
\text{If } x \in X \text{ and } x \neq 0\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 0\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 0\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$ \n $\begin{array}{r}\n\text{If } x \in X \text{ and } x \neq 1 \\
\text{If } x \in X \text{ and } x \neq 1\n\end{array}$

Confusing notation here, may not equal to Note: We usually write (the closure" of Brix) in a general metricspad $\overline{B}_1(x) = B_1(x) = \{y \in \mathbb{X} = \alpha(y, x) \leq 0\}$ the closed ball of radius t centered at x.

(3) Since
$$
\beta_r(x) = F = \{y \in X : d(x,y) > r\}
$$
 are open

$$
B_{r}(x)U \in G \text{ open}
$$
\n
$$
\Rightarrow \sum (B_{r}(x)UE)=\{y\in \underline{X}: d(x,y)=r\}
$$
\n
$$
\therefore \text{ closed}
$$

In particular,
$$
E = \{y \in X : d(y, x) > 0\}
$$
 is open
\n $\Rightarrow \{x\} = \overline{X} \setminus E$ is closed (in any matrix space)
\n $\left[N_{0}t_{2}; \{x\} \text{ may not be open } (unless \exists \xi_{0} > 0 \leq t_{1}; \text{)}$

$$
\frac{eq2.11}{\sqrt{3}}\frac{G_1(x)}{x^{n-1}3^{n}}, \text{ are open sets.}
$$
\n
$$
\frac{(\text{la}\tilde{u}_{1} \cdot \tilde{h}_{1}^{n})}{\sqrt{3}} = \frac{1}{2}x \int_{0}^{2\pi} (\text{closed, } \text{neom})
$$
\n
$$
(\text{infinite integer})\tilde{d}_{1}^{n} \text{ at the right of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{nean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi} \frac{1}{\sqrt{3}} \cdot \text{therefore} \text{ and } \text{one of the graph of } \text{onean})
$$
\n
$$
\frac{1}{2} \int_{0}^{2\pi
$$

 $eg2.13$ $X = C[a,b]$ with $cl_{10}(f,g) = 115-g11_{60} = \frac{244}{x64a}15-g11$ $\forall \phi \in \exists \phi \in C[a,b]: \text{ for all } a \in A \text{ and } b \in \mathbb{Z}.$

$$
\forall f \in E
$$
, f is positive, ct_{M} and the closed 2 bounded
interval [q,b], $theefoe \equiv m > 0$ s.t.
 $f(x) \ge m > 0$, $\forall x \in [a, b]$.

Consider $B_{\frac{m}{2}}^{\infty}(f)=\{g\in C[a,b]:d_{\infty}(g,f)\leq\frac{m}{2}\}$

 \forall g \in $B_{\underline{m}}^{\infty}(f)$, we have \forall x \in [a, 5] $g(x) = [g(x) - f(x)] + f(x)$ $354(x)-19-511\infty$ > $f(x) - \frac{M}{2}$ = $\frac{M - \frac{M}{2}}{2} = \frac{M}{2} > 0$ $9CE$ a have $B_{\infty}^{68}(f) \subset E$ $\ddot{=}$

 \therefore E is open in (C[a,b3, do).

Sunitarly, me can show that Y dER $\{\nexists \in C[a,b]: \frac{1}{2}(x)>d\, , \forall x\in[a,b]} \}$ $\{\oint f \in C[a,b]: \oint f(x) < \alpha, \forall x \in [a,b] \}$ are open in (C[a,b], dos).

 $\{\oint \in C[\mathbb{Q}, b] \}$ = $\{ (x) \ge d, \forall x \in [a, b] \}$ And $\{f \in C[\alpha, b] : f(x) \le d, \forall x \in [a, b] \}$ are closed in (C[a,b], do) (Ex!)
(Caution: C[a,b]\{fe([a,b]:f(x)zd, tx=[a,b]})
(Caution: C[a,b]\{fe([a,b]:f(x) <d, tx=ca,b]