Left:	left d and p be 2 matrices defined on X.
(1) We call S is stronger than d or d is weaker than S .	
then S , \overline{A} \overline{A} \overline{C} > 0 s4.	
$d(x,y) \leq C \int f(x,y) \leq \overline{Y} x, y \in \overline{X}$,	
(2) They are equivalent if S is stronger and weaker than S .	
$d(x,y) \leq C \int f(x,y) \leq \overline{C} d(x,y)$, $\forall x, y \in \overline{X}$.	
$d(x,y) \leq C \int f(x,y) \leq C \underline{d}(x,y)$, $\forall x, y \in \overline{X}$.	
$f(x, y) \leq C \int f(x, y) \leq C \underline{d}(x, y)$, $\forall x, y \in \overline{X}$.	

Prof ^d If ^f is stronger than ^d then Haig converges in CE ^g vinplies Hag converges in ^E ^d and hence the same bin it ² If f isequivalent to ^d then Kris converges in g if and only if I ing conoerges in C E d ³ equivalent of metrics defined above ^b an equivalent relation Pf Easy ex

$$
\underline{dg}: \text{On } \mathbb{R}^{n} \text{ and } d_{1}(x,y) = \sum_{i} |x_{i}-y_{i}|
$$
\n
$$
\begin{cases}\nd_{2}(x,y) = (\sum_{i} |x_{i}-y_{i}|^{2})^{2} \\
d_{\infty}(x,y) = \max_{i} |x_{i}-y_{i}| \\
\text{Check: } d_{2}(x,y) \leq \sqrt{n} d_{\infty}(x,y) \leq \sqrt{n} d_{2}(x,y) \\
\text{and } d_{1}(x,y) \leq n d_{\infty}(x,y) \leq n d_{1}(x,y).\n\end{cases}
$$

$$
\underline{eg}: \quad \underline{X} = C[a, b], \quad d, (f, g) = \int_{a}^{b} 1f - g
$$
\n
$$
d_{\infty}(f, g) = \max_{[a, b]} |f - g|
$$

Then Clearly $d_1(f,5) \le (b-a) d_0(f,5)$, $\forall f, g \in C[a, b].$ =. doo is stranger than ds. However, it is impossible to find C>0 st. d_{∞} (ξ , g) \leq C $d,$ (ξ , g), \forall ξ , g \in CI a,b].

$$
\begin{aligned}\n& \text{Prop2.2} \quad \text{Let } f: (\mathbb{X}, d) \Rightarrow (\mathbb{Y}, \rho) \text{ be a mapping between } 2 \\
& \text{metric spaces, and } x_0 \in \mathbb{X}. \text{ Then} \\
& \text{if } \hat{c} \text{ continuous at } x_0 \\
& \text{if } \hat{c} \text{ continuous at } x_0 \\
& \text{if } \hat{c} > 0, \exists \delta > 0 \text{ such that} \\
& \text{if } (\hat{f}(x), \hat{f}(x_0)) < \epsilon, \forall x \text{ with } d(x, x_0) < \delta.\n\end{aligned}
$$

 $(Pf=Ex!)$

Prop2.3: let $f: (\overline{X}, d) \rightarrow (\overline{Y}, p) \&$
$9: (\overline{Y}, p) \rightarrow (\overline{Z}, \mu)$
over mappings between active spaces.
(a) If f is continuous at $x \in g$ is continuous at $f(x)$
then $g \circ f: (\overline{X}, d) \rightarrow (\overline{Z}, m)$ is continuous at x .
(b) If f is it in X and g is it in \overline{X} .
then $g \circ f$ is it in X .

Eg:
$$
let (X, d) be a metric space, AC X, A \neq g
$$

\n $Define \quad \beta_A: X \Rightarrow \mathbb{R} \quad \beta_9$
\n $fi(x) = \inf_{y \in A} d(y, x)$
\n $(dotance \quad \beta_9) = \int_{A} (x) dx$
\n $(dotance \quad \beta_9) = \int_{A} (y) dx$
\n $Intence \quad \beta_9 = \int_{A} (y) dx$
\n $Ref_deia: \quad \beta_9 = \int_{A} (y) dx$

By claim,
$$
d(x_n, x) \rightarrow 0 \Rightarrow \beta_n(x_n) \rightarrow \beta_n(x)
$$

\n $\rightarrow \beta_n : (X, d) \rightarrow \mathbb{R} \rightarrow dt$.
\n $(\gamma_n \text{ feet}, \beta_n \text{ is } \text{Lipschitz continuous}')$

Notation: Urually, we use the following notations $d(x,F)=\pi f\{d(x,y):y\in F\}$ $d(E,F) = inf\{d(x,y) : x \in E, y \in F\}$ for subsets E&F.