(Pf = Easy ex.)

$$\begin{array}{l} \underline{eg}: \ On \ IR^{n} \\ \begin{cases} d_{1}(x,y) = \frac{1}{2} |x_{0}-y_{1}|^{2} \\ d_{2}(x,y) = (\frac{1}{2} |x_{0}-y_{1}|^{2})^{\frac{1}{2}} \\ d_{\infty}(x,y) = \max |x_{0}-y_{1}|^{2} \\ d_{\infty}(x,y) = \max |x_{0}-y_{1}|^{2} \\ \end{array}$$

$$\begin{array}{l} \underline{Check} = (1) \\ d_{2}(x,y) \leq \sqrt{n} \ d_{0}(x,y) \leq \sqrt{n} \ d_{2}(x,y) \\ (1) \\ d_{1}(x,y) \leq n \ d_{\infty}(x,y) \leq n \ d_{1}(x,y) \end{array}$$

$$Q_{2}: X = ([a,b],] d_{1}(f,g) = \int_{a}^{b} |f-g|$$

 $d_{\infty}(f,g) = \max_{[a,b]} |f-g|$

Then clearly $d_1(f,5) \leq (b-a) d_{00}(f,g), \forall f,g \in C[a,b].$ $= d_{00}$ is stronger than d_1 . However, it is <u>impossible</u> to find C>0 st. $d_{00}(f,g) \leq (d_1(f,g), \forall f,g \in C[a,b].$

Prop2.2 Let
$$f:(X,d) \rightarrow (T,p)$$
 be a mapping between 2
metric spaces, and $x_0 \in X$. Then
 f is catinuous of x_0
 $\Leftrightarrow (Y \leq > 0, \exists \delta > 0 \text{ such that})$
 $p(f(x), f(x_0)) < \varepsilon, \forall x \text{ with } d(x, x_0) < \delta.$

(Pf=Ex!)

Eg: let
$$(X, d)$$
 be a metric space, $A \subset X, A \neq e$
Define $P_A: X \rightarrow \mathbb{R}$ by
 $P_A(x) = \inf d(Y, x)$
 $y \in A$
(divtance from x to the subset A).
(divtance from x to the subset A).
(lain: $P_A(x) - P_A(Y) = d(x, y), \forall x, y \in X$.
By dofn. of $P_A(Y)$.
 $\forall \epsilon > 0, \exists z \in A \leq P_A(Y) + \epsilon > d(z, \theta)$
Hence, $P_A(x) \leq d(z, x) \leq d(x, y) + d(y, z)$
 $\leq cl(x, y) + P_A(y) + \epsilon$.
Interchanging the roles of $x \in Y$
 $P_A(x) - P_A(y) < d(x, y) + \epsilon$.
Interchanging the roles of $x \in Y$
 $P_A(y) - P_A(x) \leq d(x, y) + \epsilon$.
Since $\epsilon > 0$ is arbitrany, $|P_A(x) - P_A(y)| \leq d(xy)$

By claim,
$$d(x_n, x) \rightarrow 0 \Rightarrow p_A(x_n) \rightarrow p_A(x)$$

 $\therefore p_{A^{-1}}(X, d) \rightarrow \mathbb{R} \quad \forall to to.$
(Infact, $p_{A^{-1}}(X) \rightarrow \mathbb{R}$ is continuous")

Notation: Usually, we use the following notations $d(x,F) = xinf \{ d(x,y) : y \in F \}$ $d(E,F) = xinf \{ d(x,y) : x \in E, y \in F \}$ for subset $E \in F$.