Thm 1.16 For 211-periodic (real) function
$$f$$
 integrable
on $[ETT,TT]$, lim $||Snf-f||_{z} = 0$.
N=>00
i.e. the n-partial sum of the Fourier series of f
converges to f in L^{2} -sense.

Step 2: Campletion of the proof.
Applying Thm 1.7 to the function
$$g$$
 in Step 1:
 $\exists N > 0$ s.f. $\|g - S_N g\|_{\infty} < \frac{\varepsilon}{2J2T}$ uniform
(monyerve

Thus
$$\|g - S_{N}g\|_{z} = \int_{-\pi}^{\pi} (g - S_{N}g)^{z} \leq \int_{2\pi}^{2\pi} \|g - S_{N}g\|_{\infty}^{2}$$

 $= \frac{\varepsilon}{2}$.
By $Gr 1.15$, $S_{N}g \oplus of + \varepsilon = \int_{2\pi}^{2\pi} |g - S_{N}g|_{2} \oplus \int_{2\pi}^{2\pi} |g -$

Finally, since
$$E_N \subset E_n \forall n \ge N$$

(* fram more generators),

we have $\forall n \ge N$, $\|f - S_n f\|_2 \le \|f - S_N f\|_2$ (by Corl.15) $\forall x \in I$ over the subsp. $\le E_n$

 $\lim_{n \to \infty} \|S_n f - f\|_2 = 0 \quad \bigstar$

Recall: A set E is said to be of measure zero if VE>0, I countably many intervals (If & st ECUIK & ZIIR)<E. Pf: (a) let $f=f_1-f_2$, then $Q_n(f)=b_n(f)=0$ \Rightarrow S'f = 0 Au > 0Hence $\lim_{n \to in} ||S_nf - f||_2 = 0$ $\Rightarrow \|f\|_2 = 0$ By theney of Riemann integral, 5=0 almost envyrha (b) We still have $||f||_2 = 0$. As fifz eta $\Rightarrow f^2 t_1 \ge 0 \Rightarrow f^2 \equiv 0.$

Corlle (Parserval's Identity)
Fa every ZTT-periodic function
$$f$$
 integrable on ETTT]
 $\|f\|_{z}^{2} = 2TTQ_{0}^{2} + TT\sum_{n=1}^{\infty} (Q_{n}^{2} + b_{n}^{2})$
where Q_{0} , Q_{n} , by any Fourier coefficients of f .

Pf: By def. of an : $a_{o} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f dx \implies J_{2\pi} a_{o} = \langle f, \frac{1}{\sqrt{2\pi}} \rangle_{2}$ $a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f x (x) \cos nx dx \implies J_{\pi} a_{n} = \langle f, \frac{1}{\sqrt{\pi}} \cos nx \rangle_{2}$ $n \ge 1$

Suilarly
$$fmb_n = \langle f, fm sinnx \rangle_2$$
, $N \ge 1$,

Then
$$\langle f, S_N f \rangle_2 = \langle (f - S_N f) + S_N f, S_N f \rangle_2$$

(by (or 1.15) to the subsp

$$= \langle \beta_{n} f, \beta_{n} f \rangle_{2}$$

$$= \int_{\pi}^{\pi} \left(a_{0} + \sum_{k=1}^{2} a_{k} \cos(x) + b_{k} \sin(x) \right)^{2} dx$$
$$= 2\pi a_{0}^{2} + \sum_{k=1}^{2} \left(\pi a_{k}^{2} + \pi b_{k}^{2} \right)$$

Hence Thullb lim
$$||f - S_{N}S||_{2}^{2}$$

$$= \lim_{N \to \infty} (||f||_{2}^{2} - 2\langle f, \beta_{N}f \rangle_{2} + ||S_{N}f||_{2}^{2})$$

$$= \lim_{N \to \infty} (||f||_{2}^{2} - 2||S_{N}f||_{2}^{2} + ||S_{N}f||_{2}^{2})$$

$$= \lim_{N \to \infty} (||f||_{2}^{2} - ||S_{N}f||_{2}^{2})$$

$$(HWZ, Q5) \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{T^2}{5}$$
 (Euler famula)

The applications to the Wirtinger's Inequality and the -Isoperimetric Problem (Corl.19 & \$1.6 of my notes of the year 2016/17) will be omitted since they were removed from Prof Chou's notes in the last couple of years already.

Ch2 Metric Space
In this chapter, X always denotes a non-empty set.
Def: A metric on X is a function

$$d: X \times X \rightarrow [0, t60)$$
 such that
 $\forall x, y, z \in X$
(M1) $d(x, y) \ge 0$ & "equality holds $\rightleftharpoons x = y''$.
(M2) $d(x, y) \ge d(y, x)$
(M3) $d(x, y) \le d(x, z) + d(z, y)$
The pair (X, d) is called a metric space.

Note: Condition (M3) is called the triangle inequality

Ref: Let (X,d) be a metric space. The metric ball of radius & centered at x a simple the ball $B_{x}(x) = \{y \in X : d(y, x) < r\}$

$$g_{2,1}$$
 (X=1R, $d(x,y) = |X-y|$) is a metric space

eg2.2 Let
$$X = IR^n$$
, $d_2(x,y) = \int_{i=1}^{n} (x_i - y_i)^2$
(Fuclidean metric)
fa $X = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in R^2$.
Then (IR^n, d_2) is a metric space.

Recall the proof:
$$||x||^2 = \sum_{i=1}^{n} x_i^2$$

Then $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + 2\langle x,y \rangle + ||y||^2$
By Cauchy - Schwarz inequality
 $|\langle x, y \rangle| \leq ||x|| ||y||$
 $\Rightarrow ||x+y||^2 \leq (||x||+||y||)^2$
 $\Rightarrow ||x+y|| \leq ||x||+||y||, \forall x,y \in \mathbb{R}^n$
Replace x by $x-z$
 y by $z-y$,
then $||x-y|| \leq ||x-z||+||z-y||$.

$$\begin{array}{l} \text{eg23} \quad \text{Let } X = IR^n, \quad d_1(x,y) = \sum_{i=1}^{\infty} |x_i - y_i| \\ d_{\infty}(x,y) = \max_{i=1,\cdots,n} |x_i - y_i| \end{array}$$

Then (IRⁿ, d₁) & (IRⁿ, d₁₀) are metric spaces, Generalization of egs 2.282.3 to Sunction space:

$$g_{2,4} \quad \text{Let } C[a,b] = \{(\text{real}) \text{ continuous functions on } [a,b] \}$$

$$\forall f,g \in C[a,b], \quad \text{clofine}$$

$$d_{10}(f,g) = ||f-g||_{\infty} = \max \{(f(x) - g(x)) : x \in [a,b] \}$$

$$\text{Then } (C[a,b], d_{10}) \quad \text{is a metric space } (fx!)$$

Similary, one can define $J_1(f,g) = \int_a^b [f(x) - g(x)] dx$. If is also easy to verify that (CTable, d1) is a metric space.

The natural generalization of the Euclidean metric to C[a,b] is $d_2(f,g) = \int \int_a^b |f-g|^2$.

- (M1) \ge (M2) are clear for d_2 (as f. g etc.) To see (M3), note that $d_2(f,g) = ||f-g||_2$ Question 3 in $\#M|_2 \implies d_2$ satisfies (M3).
 - -i. (Clabil, dz) à a métric space.

eg25 On
$$X = R[a, b] = \begin{cases} Riemann integrable functions for a still defined $d_1(f,g) = \int_a^b [f-a] \\ However, (MI) doesn't satisfied as $d_1(f,g) = 0 \Leftrightarrow f = g$ almost everywhere $A_1(f,g) = 0 \Leftrightarrow f = g$.
 $\therefore d_1 \Leftrightarrow not a metric on R[a, b].$$$$

To overcome this, we consider
$$X = \text{Pla,bl}$$

where "~" is an equivalent relation on R[a,b]
defined by $f \sim g \Leftrightarrow f = g$ almost everywhere
(check: "~" is an equivalent relation.)

Then elements of RTa, $b_{1/2}$ can be represented as $[f] \sim \overline{f} = \{g \in R[a,b] = g = f \text{ almost everywhere }\}$ Now define $\overline{d_{i}}$ on R[a,b] by $\overline{d_{i}}(\overline{f},\overline{g}) = d_{i}(\overline{f},g)$

Check: \overline{J}_{1} is well-defined, i.e. indep. of the choice of representivitives freg: $\forall f_{1} \in \overline{f}_{1}, g_{1} \in \overline{g}_{2}$. Then $d_{1}(f_{1}, g_{1}) = \int |f_{1} - g_{1}| \leq \int |f_{1} - f_{1}| + \int |f_{2} - g_{1}| + \int |g_{2} - g_{1}| = d_{1}(f_{1}, g_{2})$

Similarly
$$d_1(f,g) \leq d_1(f_1,g_1)$$

 $-: \quad d_1(f,g) = d_1(f_1,g_1)$.

Then it is straigh forward to verify that (REa, bi/, d,) is a metric space. Similarly for (RIa, b], dz) is a metric space & note that dz is the L2-distance we defined befal.

(Ex : Show that d(x,y) = 11x-y11 is a metric white property d(xx, xy) = (a) d(x,y), HarefR)

egs:
$$||X||_2 = (\Xi \times_0^2)^{1/2}$$
, $||X||_1 = \Xi ||X||_1$
 $||X||_{60} = \max\{|X_1|_2, \dots, |X_n|\}$
are nound on \mathbb{R}^n
 $||f||_2 = (\int_a^b f|^2)^{1/2}$, $||f||_1 = \int_a^b |f|$,
 $||f||_{10} = \max\{|f||X|| = x \in [a, b]\}$
are nound on $C[a, b]$.
We've seen "noun" induces "motivic"
But not all netwic induced from nom.
 $OG : X = non-surpty set.$
 $d(X,y) = \begin{cases} 1 & ef \times fy \\ 0 & ef \times fy$

• Even for vector space: $\int_{0}^{1} = d(\alpha x, \alpha y) = |\alpha| d(x, y) = \begin{cases} 1 \\ 0 \end{cases}$ Contradiction for $\beta |z| \neq 1$. (for $x \neq y$).

Def: Let
$$(X,d)$$
 be a metric space.
Then for any non-empty $T \subset X$,
 $(\overline{Y}, d|_{\overline{TXT}})$ is called a metric subspace
 $of(\overline{X}, d)$

$$\frac{P_{rop}}{If x_n \rightarrow x e x_n \rightarrow y} \text{ in a metric space, then } x=y.$$

$$(Pf: Same es IR^n.)$$