$$
\frac{\frac{1}{1}hml.16}{\frac{m}{1}hml.16} \text{ Fa 211-peniodic (read) function } f \text{ integrable}
$$
\n
$$
\frac{m}{1} \lim_{n \to \infty} ||S_{n}f - S_{n}||_{2} = 0
$$
\n
$$
\frac{m}{1} \lim_{n \to \infty} ||S_{n}f - S_{n}||_{2} = 0
$$
\n
$$
\frac{m}{1} \lim_{n \to \infty} \lim_{n \to \infty} \frac{1}{n} \lim_{n \to \infty} \frac{1}{n
$$

$$
\underline{Pf} : \underline{Step 1 : } 4 \le 50, \underline{7} \text{ a } 2\pi-\text{periodic Lip.} \text{ } \underline{f} \text{ is } \underline{f} \text{ and } \underline{g} \text{ is } 1, \underline{f} \text{ and } \underline{g} \text{ is } 1, \underline{f} \text{ and } \underline{g} \text{ is } \underline{g} \text{ and } \underline{g}
$$

$Step 2$:	Cauplition of the proof.
$Applying Thm1.7$ to the function $9\overline{u}$. Step 1:	
$\exists N > 0$ s.f.	$119-5n9$
$119-5n9$	
$119-5n9$ </td	

Thus
$$
ng-S_{N}gII_{z}=\sqrt{\frac{m}{\pi}(g-S_{N}g)^{2}} \leq \sqrt{2\pi |g-S_{N}g||_{\infty}^{2}}
$$

\n
$$
= \frac{\epsilon}{2}
$$

\nBy Cor1.15,
\n
$$
||f-S_{N}f||_{2} \leq ||f-S_{N}g||_{2} \quad (\frac{S_{eul}}{d_{o}+\sum_{k=1}^{N}(\alpha_{k}\omega_{k}k)})(f-S_{N}f||_{2} + ||g-S_{N}g||_{2} \quad (Ex.)
$$

\n
$$
< \frac{\epsilon}{2}+\frac{\epsilon}{2} = \epsilon \quad (\text{HWS } \text{Q}3)
$$

$$
Finally, since EN \subset En \forall n \ge N
$$

(
$$
(\& \text{faw more generators})
$$
)

we have $H \times N$, $11 + -5n512 \leq 11 + -5n512 \leq \frac{6n515}{5n}$

 $\lim_{n \to \infty} ||S'_n f - f||_2 = 0$ $\ddot{}$

\n
$$
\begin{array}{r}\n G_{\alpha,1,17} \\
 G_{\alpha,2,1,18} \\
 G_{\alpha,3,2,1,1}\\ \hline\n G_{\alpha,4,2,1,1}\\ \hline\n G_{\alpha,4,1,1,1}\\ \hline\n G_{\alpha,4,1,1,1,1}\\ \hline\n G_{\alpha,
$$

Rocall: A set E is said to be of measure sero if $Y \ge 0$, I courtably many intervals $\{T_k\}$ st $E \subset \bigcup_{k} I_k$ 2 $\sum_{k} |I_k| < \epsilon$. $Pf: (a)$ let $f=f_{1}-f_{2}$, then $Q_{11}(f)=b_{11}(f)=0$ \Rightarrow $S_n f = 0$ $\forall n \ge 0$ Hence $\lim_{n \to \infty} ||\xi_n^2 - f||_2 = 0$ \Rightarrow $||\oint ||_2 = 0$ By therey of Riemann integral, $5=0$ almost energation (b) We still have $\|S\|_2 = 0$. As f. f. cts \Rightarrow f²cts \geq 0 \Rightarrow f=0. X

Cor1.18 (Parsavad's Zdentity)
\nFa away
$$
2\pi
$$
-periodic function f integrable m F π]
\n $||f||_2^2 = 2\pi G_0^2 + \pi \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$
\nwhere a_0 , a_n , b_n are Fourier coefficients of f.

 $By def. of a_n :$ Pf : $a_{o} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f dx \implies \sqrt{2\pi} a_{o} = \langle \oint_{-\pi} \frac{1}{\sqrt{2\pi}} \rangle_{Z}$ $a_n = \pm \int_{\pi}^{\pi} f(x) \cos nx dx \implies \pi a_n = \langle f, \frac{1}{\sqrt{\pi}} \cos nx \rangle$ $n \geq 1$

$$
sini
$$
lawly $\pi b_n = \langle f, \frac{1}{\sqrt{\pi}} \sin nx \rangle$

$$
Thus (f, S_{N}f)_{z} = \sqrt{(f-S_{N}f) + S_{N}f}, \frac{S_{N}f}{N}f
$$
\n
$$
(b_{M}cot.15) + b_{M}sinh \frac{atto^{2}}{N}
$$

$$
= \langle S_{\mathsf{M}} S_{\mathsf{M}} S_{\mathsf{M}} S \rangle
$$

$$
= \int_{\pi}^{\pi} (a_{0} + \sum_{k=1}^{N} a_{k} \omega_{k} \chi + b_{k} \omega_{k} \chi) d\chi
$$

= $2\pi a_{0}^{2} + \sum_{k=1}^{N} (\pi a_{k}^{2} + \pi b_{k}^{2})$

Hence
$$
\tau_{\text{full}}^{\text{full}} = \lim_{N \to \infty} (1-f_{\text{full}}f)^{2}
$$

\n
$$
= \lim_{N \to \infty} (1/f_{\text{all}}^{2} - 2(f_{\text{full}}f)^{2} + \|f_{\text{full}}f\|_{2}^{2})
$$
\n
$$
= \lim_{N \to \infty} (1/f_{\text{all}}^{2} - 2||f_{\text{full}}f||_{2}^{2} + ||f_{\text{full}}f||_{2}^{2})
$$
\n
$$
= \lim_{N \to \infty} (1/f_{\text{all}}^{2} - 2||f_{\text{full}}f||_{2}^{2} + ||f_{\text{full}}f||_{2}^{2})
$$
\n
$$
= \lim_{N \to \infty} (1/f_{\text{all}}^{2} - ||f_{\text{full}}f||_{2}^{2})
$$
\n
$$
\therefore ||f||_{2}^{2} = \lim_{N \to \infty} [2\pi a_{0}^{2} + \pi \sum_{k=1}^{N} (a_{k}^{2} + b_{k}^{2})]
$$
\n
$$
\Rightarrow \lim_{N \to \infty} [2\pi a_{0}^{2} + \pi \sum_{k=1}^{N} (a_{k}^{2} + b_{k}^{2})]
$$
\n
$$
\Rightarrow \lim_{N \to \infty} [2\pi a_{0}^{2} + \pi \sum_{k=1}^{N} (a_{k}^{2} + b_{k}^{2})]
$$

$$
eg: By Fourier series of $f_1(x) = x$ on $x \in \mathbb{N}$
$$

$$
(HW2, Q5) \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \quad (\text{Euler formula})
$$

The applications to the Wirtinger's Inequality and the Isoperinetric Problem (Corl.19 & SI.6 of my notes of the year 2016/17) will be omitted since they were removed frame Prof Chou's notes in the last couple of years already.

Ch2 Metsic Space

\nThat this chapter, X always denotes a num-number set.

\nDiff: A matrix
$$
\omega
$$
 as is a function

\n
$$
d: \chi \times \chi \to [0, t\omega) \quad \text{such that}
$$
\n
$$
\forall x, y, z \in \chi
$$
\n
$$
(M1) \quad d(x, y) \ge 0 \quad \text{for } y \in \chi
$$
\n
$$
(M2) \quad d(x, y) = d(y, x)
$$
\n
$$
(M3) \quad d(x, y) \in d(x, z) + d(z, y)
$$
\n
$$
d(x, y) \le d(x, z) + d(z, y)
$$
\n
$$
d(x, y) \le d(x, z) + d(z, y)
$$

Note: Condition (M3) is called the triangle inequality

Def: Let (\mathbb{X},d) be a metric space. The metric ball of radius r centered at X or simple the ball $B_r(x) = \{y \in \mathbb{X} : d(y,x) < r\}$

$$
gg2.1
$$
 $(Z=R, d(x,y)=|x-y|)$ is a metric space

492.2 Let
$$
X = \mathbb{R}^n
$$
, $d_2(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$
\n(Fudidean metric)

\nFor $X = (x_1 \cdot x_0) = y = (y_1, \cdot y_0) \in \mathbb{R}^2$,

\nThen $(\mathbb{R}^n, d_2) = \emptyset$ a matrix space.

$$
\begin{bmatrix}\n\text{Real the proof}: & \|x\|^2 = \sum_{i=1}^M x_i^2 \\
\text{Then} & \|x+y\|^2 = \langle x+y, x+y \rangle = \|x\|^2 + 2\langle x,y \rangle + \|y\|^2 \\
\text{By Cauchy - Sclwary inequality} \\
& | \langle x, y \rangle | \le \|x\| \|y\| \n\end{bmatrix}
$$
\n
$$
\Rightarrow \quad \|x+y\|^2 \le \left(\|x\| + \|y\| \right)^2
$$
\n
$$
\Rightarrow \quad \|x+y\|^2 \le \left(\|x\| + \|y\| \right)^2
$$
\n
$$
\Rightarrow \quad \|x+y\|^2 \le \|x\| + \|y\| \quad \forall x,y \in \mathbb{R}^n
$$
\n
$$
\text{Replace } x \text{ by } x \to 0 \quad \forall y \text{ and } y \text{ and } y \text{ are } |x| \le \|x\| + \|x - y\| \quad \text{and} \quad \|x - y\| \le \|x - y\| + \|x - y\| \quad \text{and} \quad y \text{ are } |x - y\| \le \|x - y\| + \|x - y\| \quad \text{and} \quad y \text{ is } |x - y\| \le \|x - y\| + \|x - y\| \quad \text{and} \quad y \text{ is } |x - y\| \le \|x - y\| + \|x - y\| \quad \text{and} \quad y \text{ is } |x - y\| \le \|x - y\| + \|x - y\| \quad \text{and} \quad y \text{ is } |x - y\| \le \|x - y\| + \|x - y\| + \|y - y\| + \|y
$$

$$
Q_{1}^{2}23 \text{ Let } \underline{X} = \mathbb{R}^{n}, \quad d_{1}(x,y) = \sum_{\tau=1}^{m} |x_{\tau} - y_{\tau}|
$$
\n
$$
d_{\infty}(x,y) = \max_{\tau \in \{1, \cdots, n\}} |x_{\tau} - y_{\tau}|
$$

Then (\mathbb{R}^n,d_1) a (\mathbb{R}^n,d_∞) are metric spaces. Generalization of egs 2.2 z 2.3 to Sunction space:

$$
\frac{q}{4} + \left[\frac{q}{4} \right] = \frac{1}{4} (\text{real}) \text{ continuous functions on } [a,b] \text{ s}
$$
\n
$$
\frac{1}{4} + \frac{1}{4} \int e^{-\frac{q}{4}} \, d\theta = \sqrt{16} \text{ s}
$$
\n
$$
\frac{1}{4} \int_{-\infty}^{\infty} \left(\frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \, d\theta \right) = \frac{1}{4} \int_{-\infty}^{\infty} \left(\frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \, d\theta \right) = \frac{1}{4} \int_{-\infty}^{\infty} \left(\frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \, d\theta \right) = \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \, d\theta =
$$

Sunclary, one can define $G^{1}(f)$ \int_{a} If (x) -g (x)) dx It is also easy to verify that $(C[4,b],d_1)$ is a metric space.

The natural generalization of the Euclidean metric t_{o} C[a,b] is $d_{2}(f,g) = \sqrt{\int_{a}^{b} |f-g|^{2}}$.

- $(M1)$ e $(M2)$ are clear fa dz (ces f 9 cts) T_0 see (M3), note that $d_2(f,g)=||f-g||_2$ Question 3 in $HW1 \implies dz$ satisfies $(M3)$.
	- \therefore (CEQNJ, dz) is a metric space.

4. a result defined
$$
d_1(f,g) = \int_{\alpha}^{h} (f - f)
$$

\n4. a still defined $d_1(f,g) = \int_{\alpha}^{h} (f - f)$

\n4. a result does not satisfy g as $d_1(f,g) = 0 \Leftrightarrow f = g$ almost everywhere $d_1(f,g) = 0 \Leftrightarrow f = g$.

\n4. a matrix on RRg is g .

To curve the *condition*
$$
X = \frac{R[a,b]}{A}
$$

where " \sim " \sim " \sim our equivalent relation on $R[a,b]$
defined by $f \sim g \iff f = g$ almost everywhere
(check: "r" \sim an equivalent relation.)

 $\ddot{}$

Then elements of
$$
RIQbJ
$$
 can be represented as
\n $ISJ \propto \overline{f} = \{ g \in RIgbl = g = f$ almost everywhere $\}$
\nNow define \overline{d}_1 on $RIqbl$ by
\n $\overline{d}_1(\overline{f}, \overline{g}) = d_1(\overline{f}, \overline{g})$

Check:
$$
\overline{d}_1
$$
 is well-defined, \overline{e} . \overline{u} do \overline{p} . of the choice of
representivities $f \in g$;
 $\forall f_i \in \overline{f}$, $g_i \in \overline{g}$. Then
 $d_i(f_i, g_i) = \int |f_i - g_i| \le \int |f_i \cdot f| + |f - g| + |\overline{g}g_i|$
 $= d_i(f, g)$

$$
Simplify \quad d_1(f,g) \leq d_1(f,g)
$$

:.
$$
d_1(f,g) = d_1(f,g)
$$

Then it is straigh fourand to verify that (R[a,b]/ , d]) is a notric space. Suivilarly for (RIa,b], de) à a metric space 2 note that $\widetilde{d_2}$ is the 1-distance we defined before.

Def	A	num	II	II	io	A	function on a real vector	and vector
Z	to	to	sst	$Y \times Y \in X$	$z \times e \in R$			
(NI)	$ X \ge 0$	z	$ X = 0 \Leftrightarrow X = 0$					
(N2)	$ X \times = X \times $							
(N3)	$ X + y \le X + y $							
Thé pair (Z, \cdot) \ge called a <i>named</i>								
And $d(X, y) \stackrel{\text{def}}{=} X - y $ \ge called the <i>metric</i>								
indual by the <i>normal</i> $ \cdot $								

 $(E \times :$ Show that $d(x,y) = ||x-y||$ is a metric
whathe property $d(x,y) = |x| d(x,y)$, taken

295	$ X _2 = (5x_0^2)^{1/2}$, $ X _1 = 5 x_0^2 $
$ X _{60} = max\{1x_1\}^{1/2}, 1x_0^2 $	
$ X _{60} = max\{1x_1\}^{1/2}, 1x_0^2 $	
$ f _{60} = max\{ f(X) = \int_{a}^{b} f $,	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a,b]\}$	
$ f _{60} = max\{ f(X) > k\epsilon[a$	

 \bullet Even fa vecta space:
 $\left(\begin{array}{c} \circ \\ \circ \end{array}\right) = d(\alpha x, \alpha y) = |\alpha| d(x, y) = \begin{array}{c} |\alpha| \\ \circ \end{array}$

Cartradictor fa $\aleph |11$ (fa $x+y$).

Def	Let (\mathbb{X}, d) be a matrix space.
Then fn any nm -empty $T \subset \mathbb{X}$,	
$(\overline{Y}, d _{\overline{X}\overline{Y}})$ is called a <u>matrix</u> subspace	
$of(\mathbb{X}, d)$	

Notes: d's metac subspace & a metric space.

\n(i') We simple write
$$
(\overline{Y}, d)
$$
 for $(\overline{Y}, d | \overline{Y}, d | \overline{Y})$.

\n(ii') A metaic subspace of a named space needs not be a named space, only \overline{u} due subset is also a vector subspace.

$$
\boxed{\underline{\underline{\mathcal{Q}}}}: A \text{ sequence } \{x_{n}\} \text{ in a matrix space } (\underline{X}, d)
$$
\n
$$
\underline{\mathcal{Q}}: A \text{ sequence } \{x_{n}\} \text{ in a matrix space } (\underline{X}, d)
$$
\n
$$
\underline{\mathcal{L}}: A \text{ sequence } \underline{\mathcal{L}}: \underline
$$

P_{YOP}	(Uniqueness of limit)		
T_f	$x_n \rightarrow x$	$x_n \rightarrow y$	in a metric space, then $x=y$.
($Pf: Same$ as IR^n .)			

$$
\mathcal{L}_{1}^{2}S = \mathcal{L}_{1}^{2}Canwegencz \mathcal{I}_{1}^{2} \quad (\mathbb{R}^{1}^{2},dz) \text{ is the usual convergence in } \mathcal{L}_{2}^{2}
$$