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Definition 0.1 (Complex Numbers). The set of complex numbers C is the extension field of the set
of real numbers R such that the polynomial x2 + 1 has roots. If we denote i a root of of x2 + 1, then
we can say C := {x+ iy|x, y ∈ R}.

Remark. Please refer to MATH2070/MATH3040 for the precise definition of regarding C as a field
extension of R.

There are different ways to parametrize, or represent, a complex number using two real numbers.

Definition 0.2 (Planar Parametrization). Define a function F : R2 → C by (x, y) 7→ x+ iy. Then
we call F the planar parametrization of complex numbers. If z = F (x, y) = x+ iy for x, y ∈ R, we
call its real part Re(z) := x and its imaginary part Im(z) := y.

Definition 0.3 (Polar Parametrization). Define a function G : (0,∞) × (−π, π] by (ρ, θ) 7→ ρeiθ.
Then we call G the polar, or exponential parametrization of complex numbers. If z = G(ρ, θ) = ρeiθ,
we call its modulus |z| := ρ and its (principal) argument Arg(z) := θ.

Remark. We can in fact transit between between the planar parametrization and the polar parametriza-
tion of complex numbers using the defining Euler formula, which says for all ρ > 0, θ ∈ R, we have
the following

ρeiθ := ρ cos θ + iρ sin θ

Recall that the Euler formula is necessary if we want the exponential function to have ”good”
properties, namely the Taylor Series property and the identity ex+y = exey for x, y ∈ C (see Lecture
2).

1 Algebraic Structures

By definition, the set of complex number forms a field. Equivalently, we have 1. addition and
multiplication are commutative and associative; 2. inverses and identities for both operations exist;
3. multiplication is distributive over addition. In addition to these basic operations, the complex
numbers have, over the real numbers, an additional operation, namely the complex conjugation.

Definition 1.1. Let z ∈ C. Suppose z := x + iy for x, y ∈ R. We define z := x − iy the complex
conjugate of z.

Complex conjugation, despite its simple definition, indeed satisfies lots of nice properties, which
are easy to prove as well.

Proposition 1.2. Let z ∈ C. Then we have the following:

1. Re(z) = 1
2 (z + z)

2. Im(z) = 1
2i (z − z)

3. z ∈ R if and only if z = z

Remark. From 3, we can see the conjugate operation trivializes if we consider only real numbers.
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Proposition 1.3. Let z1, z2 ∈ C. Then we have the following:

1. z1 + z2 = z1 + z2 (compatible with addition)

2. z1z2 = z1 · z2 (compatible with multiplication)

3. 1 = 1 (compatible with identity)

4. z̄ = z (involutive)

These properties are the so-called *-properties (star-properties).

Proposition 1.4. Let z ∈ C. Then z · z ∈ R and z · z = |z|2.

Remark. This is indeed a very useful and in fact deep property relating conjugation and modulus.

2 Distance Structures

In R, we can measure the distance between two points x, y using the absolute value and consider
|x− y|. In C, we can do the same with modulus, thanks to the important Triangle Inequality, which
makes the modulus act like a distance.

Theorem 2.1 (Triangle Inequality for C). Let z1, z2 ∈ C. Then we have the following,

|z1 + z2| ≤ |z1|+ |z2|

In the Lecture Note, a geometric proof is given for 2.1. In this tutorial, an algebraic proof is given.
In fact, we shall see that the triangle inequality is equivalent to the Cauchy-Schwarz inequality (for
2 pairs of numbers), which you have learnt in MATH1030. Let’s recall it.

Theorem 2.2 (Cauchy-Schwarz Inequality). Let xi, yi ≥ 0 be a finite list of non-negative real
numbers. Then we have the following∑

i

xiyi ≤ (
∑
i

x2i )
1
2 (
∑
i

y2i )
1
2

Proof of 2.1 using 2.2. Let z1 = x1 + ix2 and z2 = y1 + iy2 where x1, x2, y1, y2 ∈ R. It suffices to
show

(
∑
i=1,2

|xi + yi|2)
1
2 ≤ (

∑
i=1,2

|xi|2)
1
2 + (

∑
i=1,2

|yi|2)
1
2

This follows immediately from the following chain of inequalities∑
i=1,2

|xi + yi|2

(triangle inequality for R) ≤
∑
i=1,2

|xi + yi|(|xi|+ |yi|)

=
∑
i=1,2

|xi + yi||xi|+
∑
i=1,2

|xi + yi||yi|

(Cauchy-Schwarz inequality) ≤(
∑
i=1,2

|xi + yi|2)
1
2 (

∑
i=1,2

|xi|2)
1
2 + ≤ (

∑
i=1,2

|xi + yi|2)
1
2 (

∑
i=1,2

|yi|2)
1
2

=(
∑
i=1,2

|xi + yi|2)
1
2 ((

∑
i=1,2

|xi|2)
1
2 + (

∑
i=1,2

|yi|2)
1
2 )
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3 Order Structures

As an extension of real numbers, the set of complex numbers seem to satisfy more properties.
Nonetheless, complex numbers are less ideal in terms their order structures.

Definition 3.1. Let ≤ be a relation on C. Then

1. we call ≤ reflexive if x ≤ x for all x ∈ C

2. we call ≤ transitive if x ≤ y, and y ≤ z imply x ≤ z for all x, y, z ∈ C

3. we call ≤ symmetric if x ≤ y and y ≤ x imply x = y for all x, y ∈ C

4. we call ≤ total if x ≤ y or y ≤ x for all x, y ∈ C

5. we call ≤ compatible with addition if x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ C

6. we call ≤ compatible with product if x ≤ y implies xz ≤ yz for all x, y ∈ C and 0 ≤ z

We call ≤ a preorder if it is reflexive and transitive; we call a symmetric preorder a partial ordering ;
and we call a total partial ordering a total ordering.

When we say the set of complex numbers lack an order structure, we mean precisely the following.

Theorem 3.2. There is no total ordering compatible with both addition and product for C.

Proof. We shall give a proof by contradiction. Let’s first suppose there is one,denoted by ≤, so
by totality either 0 ≤ i or i ≤ 0. Let’s suppose 0 ≤ i. Then by product compatibility, we have
0 ≤ i2 = −1. From this, we have 0 ≤ 1 by product compatibility again, or we have 1 ≤ 0 by adding
1 on both sides. Then by symmetry, 1 = 0, which is false. The case for i ≤ 0 is left to the reader.

Remark. Although C has no total ordering that is compatible with the algebraic operations, it indeed
admits total orderings if we do not require such compatibility (see Exericse below).

4 Exericse

1. Let z = −2 + i and w = 3 + 4i. Compute the following in planar form.

z + wa) −zwb) z
iwc)

2. Let z, w ∈ C.

(i). Prove that zz = |z|2

(ii). Prove that |zw| = |z||w|

(iii). Prove that |z + w|2 = |z|2 + |w|2 + 2 Re(zw)

(iv). Give a counter example to show that the square of a complex number may not be a real
number.

3. Show that |Re(z)| ≤ |z| and | Im(z)| ≤ |z| for all z ∈ C.

4. Let 0 6= z ∈ C. Show that there exists w ∈ C with |w| = 1 such that w is a scalar multiple of z,
that is, there exists λ ∈ R such that λw = z. We call such w a normalization of z.

5. Prove the inverse triangle inequality using triangle equality:

||z| − |w|| ≤ |z − w|

where z, w ∈ C
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6. Prove the Cauchy Schwarz inequality (for two pairs of numbers) using Triangle Inequality for
complex numbers; this, together with the proof in this note, shows that Triangle Inequality for
complex number is equivalent to the Cauchy-Schwarz inequality for two pairs of real numbers, that
is: ∑

i

xiyi ≤ (
∑
i

x2i )
1
2 (
∑
i

y2i )
1
2

where x1, x2, y1, y2 are non-negative real numbers.

7. Continue the proof of Theorem 3.2, which says that, there is no total ordering on C that is
compatible with both addition and product.

8. Define a relation ≤ on C by the following:

If Re(z) ≤ Re(w), then z ≤ w (1)

If Re(z) > Re(w), then z ≤ w if Im(z) ≤ Im(w) (2)

(i). Show that ≤ is a total ordering.

(ii). Is it true that ≤ is compatible with addition? If not, give a counter example.

(iii). Is it true that ≤ is compatible with product? If not, give a counter example.

This ordering is called the lexicographic order
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