The Chinese University of Hong Kong 2020 - 2021 MATH 2230A Tutorial 1: Basic Structures of Complex Numbers (Prepared by Lam Ka Lok)

Definition 0.1 (Complex Numbers). The set of *complex numbers* $\mathbb C$ is the extension field of the set of real numbers $\mathbb R$ such that the polynomial $x^2 + 1$ has roots. If we denote i a root of of $x^2 + 1$, then

Remark. Please refer to MATH2070/MATH3040 for the precise definition of regarding $\mathbb C$ as a field extension of R.

There are different ways to parametrize, or represent, a complex number using two real numbers.

Definition 0.2 (Planar Parametrization). Define a function $F : \mathbb{R}^2 \to \mathbb{C}$ by $(x, y) \mapsto x + iy$. Then we call F the planar parametrization of complex numbers. If $z = F(x, y) = x + iy$ for $x, y \in \mathbb{R}$, we call its real part $\text{Re}(z) := x$ and its *imaginary part* $\text{Im}(z) := y$.

Definition 0.3 (Polar Parametrization). Define a function $G : (0, \infty) \times (-\pi, \pi]$ by $(\rho, \theta) \mapsto \rho e^{i\theta}$. Then we call G the polar, or exponential parametrization of complex numbers. If $z = G(\rho, \theta) = \rho e^{i\theta}$, we call its modulus $|z| := \rho$ and its *(principal) argument* Arg $(z) := \theta$.

Remark. We can in fact transit between between the planar parametrization and the polar parametrization of complex numbers using the defining Euler formula, which says for all $\rho > 0$, $\theta \in \mathbb{R}$, we have the following

$$
\rho e^{i\theta} := \rho \cos \theta + i\rho \sin \theta
$$

Recall that the Euler formula is necessary if we want the exponential function to have "good" properties, namely the Taylor Series property and the identity $e^{x+y} = e^x e^y$ for $x, y \in \mathbb{C}$ (see Lecture 2).

1 Algebraic Structures

we can say $\mathbb{C} := \{x + iy | x, y \in \mathbb{R}\}.$

By definition, the set of complex number forms a field. Equivalently, we have 1. addition and multiplication are commutative and associative; 2. inverses and identities for both operations exist; 3. multiplication is distributive over addition. In addition to these basic operations, the complex numbers have, over the real numbers, an additional operation, namely the complex conjugation.

Definition 1.1. Let $z \in \mathbb{C}$. Suppose $z := x + iy$ for $x, y \in \mathbb{R}$. We define $\overline{z} := x - iy$ the *complex* conjugate of z.

Complex conjugation, despite its simple definition, indeed satisfies lots of nice properties, which are easy to prove as well.

Proposition 1.2. Let $z \in \mathbb{C}$. Then we have the following:

- 1. Re(z) = $\frac{1}{2}(z + \overline{z})$
- 2. $\text{Im}(z) = \frac{1}{2i}(z \overline{z})$
- 3. $z \in \mathbb{R}$ if and only if $z = \overline{z}$

Remark. From 3, we can see the conjugate operation trivializes if we consider only real numbers.

Proposition 1.3. Let $z_1, z_2 \in \mathbb{C}$. Then we have the following:

1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (compatible with addition) 2. $\overline{z_1z_2} = \overline{z_1} \cdot \overline{z_2}$ (compatible with multiplication) 3. $\overline{1} = 1$ (compatible with identity) $4. \ \overline{\overline{z}} = z$ (involutive)

These properties are the so-called *-properties (star-properties).

Proposition 1.4. Let $z \in \mathbb{C}$. Then $z \cdot \overline{z} \in \mathbb{R}$ and $z \cdot \overline{z} = |z|^2$.

Remark. This is indeed a very useful and in fact deep property relating conjugation and modulus.

2 Distance Structures

In \mathbb{R} , we can measure the distance between two points x, y using the absolute value and consider $|x-y|$. In \mathbb{C} , we can do the same with modulus, thanks to the important Triangle Inequality, which makes the modulus act like a distance.

Theorem 2.1 (Triangle Inequality for C). Let $z_1, z_2 \in \mathbb{C}$. Then we have the following,

$$
|z_1 + z_2| \le |z_1| + |z_2|
$$

In the Lecture Note, a geometric proof is given for 2.1. In this tutorial, an algebraic proof is given. In fact, we shall see that the triangle inequality is equivalent to the Cauchy-Schwarz inequality (for 2 pairs of numbers), which you have learnt in MATH1030. Let's recall it.

Theorem 2.2 (Cauchy-Schwarz Inequality). Let $x_i, y_i \geq 0$ be a finite list of non-negative real numbers. Then we have the following

$$
\sum_{i} x_i y_i \leq (\sum_{i} x_i^2)^{\frac{1}{2}} (\sum_{i} y_i^2)^{\frac{1}{2}}
$$

Proof of 2.1 using 2.2. Let $z_1 = x_1 + ix_2$ and $z_2 = y_1 + iy_2$ where $x_1, x_2, y_1, y_2 \in \mathbb{R}$. It suffices to show

$$
\left(\sum_{i=1,2}|x_i + y_i|^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1,2}|x_i|^2\right)^{\frac{1}{2}} + \left(\sum_{i=1,2}|y_i|^2\right)^{\frac{1}{2}}
$$

This follows immediately from the following chain of inequalities

$$
\sum_{i=1,2} |x_i + y_i|^2
$$
\n(triangle inequality for \mathbb{R}) $\leq \sum_{i=1,2} |x_i + y_i|(|x_i| + |y_i|)$

\n
$$
= \sum_{i=1,2} |x_i + y_i||x_i| + \sum_{i=1,2} |x_i + y_i||y_i|
$$
\n(Cauchy-Schwarz inequality)

\n
$$
\leq (\sum_{i=1,2} |x_i + y_i|^2)^{\frac{1}{2}} (\sum_{i=1,2} |x_i|^2)^{\frac{1}{2}} + \leq (\sum_{i=1,2} |x_i + y_i|^2)^{\frac{1}{2}} (\sum_{i=1,2} |y_i|^2)^{\frac{1}{2}}
$$
\n
$$
= (\sum_{i=1,2} |x_i + y_i|^2)^{\frac{1}{2}} ((\sum_{i=1,2} |x_i|^2)^{\frac{1}{2}} + (\sum_{i=1,2} |y_i|^2)^{\frac{1}{2}})
$$

3 Order Structures

As an extension of real numbers, the set of complex numbers seem to satisfy more properties. Nonetheless, complex numbers are less ideal in terms their order structures.

Definition 3.1. Let \leq be a relation on \mathbb{C} . Then

- 1. we call \leq *reflexive* if $x \leq x$ for all $x \in \mathbb{C}$
- 2. we call \leq transitive if $x \leq y$, and $y \leq z$ imply $x \leq z$ for all $x, y, z \in \mathbb{C}$
- 3. we call \leq symmetric if $x \leq y$ and $y \leq x$ imply $x = y$ for all $x, y \in \mathbb{C}$
- 4. we call \leq total if $x \leq y$ or $y \leq x$ for all $x, y \in \mathbb{C}$
- 5. we call \leq compatible with addition if $x \leq y$ implies $x + z \leq y + z$ for all $x, y, z \in \mathbb{C}$
- 6. we call \leq compatible with product if $x \leq y$ implies $xz \leq yz$ for all $x, y \in \mathbb{C}$ and $0 \leq z$

We call \leq a preorder if it is reflexive and transitive; we call a symmetric preorder a partial ordering; and we call a total partial ordering a total ordering.

When we say the set of complex numbers lack an order structure, we mean precisely the following.

Theorem 3.2. There is no total ordering compatible with both addition and product for \mathbb{C} .

Proof. We shall give a proof by contradiction. Let's first suppose there is one,denoted by \leq , so by totality either $0 \leq i$ or $i \leq 0$. Let's suppose $0 \leq i$. Then by product compatibility, we have $0 \leq i^2 = -1$. From this, we have $0 \leq 1$ by product compatibility again, or we have $1 \leq 0$ by adding 1 on both sides. Then by symmetry, $1 = 0$, which is false. The case for $i \leq 0$ is left to the reader. \Box

Remark. Although $\mathbb C$ has no total ordering that is compatible with the algebraic operations, it indeed admits total orderings if we do not require such compatibility (see Exericse below).

4 Exericse

- 1. Let $z = -2 + i$ and $w = 3 + 4i$. Compute the following in planar form.
- a) $z + \overline{w}$ b) $-\overline{z}w$ c) $\frac{z}{iw}$

2. Let $z, w \in \mathbb{C}$.

- (i). Prove that $z\overline{z} = |z|^2$
- (ii). Prove that $|zw| = |z||w|$
- (iii). Prove that $|z+w|^2 = |z|^2 + |w|^2 + 2 \text{Re}(z\overline{w})$
- (iv). Give a counter example to show that the square of a complex number may not be a real number.
- **3.** Show that $| \text{Re}(z) | \leq |z|$ and $| \text{Im}(z) | \leq |z|$ for all $z \in \mathbb{C}$.

4. Let $0 \neq z \in \mathbb{C}$. Show that there exists $w \in \mathbb{C}$ with $|w| = 1$ such that w is a scalar multiple of z, that is, there exists $\lambda \in \mathbb{R}$ such that $\lambda w = z$. We call such w a normalization of z.

5. Prove the inverse triangle inequality using triangle equality:

$$
||z| - |w|| \le |z - w|
$$

where $z, w \in \mathbb{C}$

6. Prove the Cauchy Schwarz inequality (for two pairs of numbers) using Triangle Inequality for complex numbers; this, together with the proof in this note, shows that Triangle Inequality for complex number is equivalent to the Cauchy-Schwarz inequality for two pairs of real numbers, that is:

$$
\sum_{i} x_i y_i \leq (\sum_{i} x_i^2)^{\frac{1}{2}} (\sum_{i} y_i^2)^{\frac{1}{2}}
$$

where x_1, x_2, y_1, y_2 are non-negative real numbers.

7. Continue the proof of Theorem 3.2, which says that, there is no total ordering on $\mathbb C$ that is compatible with both addition and product.

8. Define a relation \leq on $\mathbb C$ by the following:

If
$$
\text{Re}(z) \le \text{Re}(w)
$$
, then $z \le w$ (1)

If
$$
\text{Re}(z) > \text{Re}(w)
$$
, then $z \leq w$ if $\text{Im}(z) \leq \text{Im}(w)$ (2)

- (i). Show that \leq is a total ordering.
- (ii). Is it true that \leq is compatible with addition? If not, give a counter example.
- (iii). Is it true that \leq is compatible with product? If not, give a counter example.

This ordering is called the lexicographic order