MATH2230A Tutorial 1

Lam Ka Lok

15 - 9 - 2020

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Your TA

Kaihui Luo

Email: khluo@math.cuhk.edu.hk Will be grading your first two HW and tutoring from the third Tutorials onwards

Ka Lok Lam, or Marco

Email: kllam@math.cuhk.edu.hk Will be tutoring the first two Tutorial and grading from your third HW onwards

KORKARYKERKER POLO

Please feel free to contact us if you have any question.

2,3,4xxx courses VS 1xxx, secondary ~> Abstract spaces VS concrete numbers

[Representing Complex Numbers](#page-2-0)

[Planar Representation](#page--1-0) [Polar Representation and the Euler Forumula](#page--1-0)

[Algebraic Structures](#page-5-0)

[Field Properties](#page--1-0) [Complex Conjugation](#page--1-0)

[Distance Structures](#page-9-0) [The Triagnle Inequality](#page--1-0)

[Order Structures](#page-12-0)

Abstract Structures: 1030: Vector space 2070: group, ring, field 3060: metric space, etc.

Next Lecture/Lecture this week After representations, and structures, probably subsets

[Basic definitions](#page-13-0) The Lack of Good Order Struc**and functions.**

Planar Representation of Complex Numbers

Definition

The space of complex number $\mathbb C$ is the (field) extension of the space of real numbers \R such that the real polynomial $\mathsf{x}^2\hspace{-0.05cm}+\hspace{-0.05cm}1$ has a root. We denote the roots $i, -i$.

Definition (Planar parametrization)

Define a function $F : \mathbb{R}^2 \to \mathbb{C}$ by $(x, y) \mapsto x + iy$. Then we call F the planar parametrization of complex numbers. If $z = F(x, y) = x + iy$ for $x, y \in \mathbb{R}$, we call its real part Re(z) := x and its *imaginary part* $Im(z) := y$.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 200

Polar Representation and the Euler Forumula

Definition (Polar Representation)

 $Remark: The$ It is necessar

Define a function $G:(0,\infty)\times (-\pi,\pi]$ by $(\rho,\theta)\mapsto \rho e^{i\theta}.$ Then we call G the polar, or exponential parametrization of complex numbers. If $z = G(\rho, \theta) = \rho e^{i\theta}$, we call its modulus $|z| := \rho$ and its (principal) argument $Arg(z) := \theta$

Transition between Planar and Polar Form - Euler Forumla For all $\rho > 0$, $\theta \in \mathbb{R}$, we have the following

$$
\rho e^{i\theta} := \rho \cos \theta + i\rho \sin \theta
$$
\nRemark: The Euler Formula is a definition.

\nIt is necessary so that exp has the Taylor Series Expansion and satisfies e^λ(x+y) = e^λx e^λy.

KORKAR KERKER ST VOOR

[Representing Complex Numbers](#page-2-0) [Planar Representation](#page--1-0) [Polar Representation and the Euler Forumula](#page--1-0)

[Algebraic Structures](#page-5-0) [Field Properties](#page--1-0) [Complex Conjugation](#page--1-0)

Second Step: Structures of the abstract space. Algebraic, Distance and Order Structures are the basic structures we find in R.

KORK EXTERNE PROVIDE

[Distance Structures](#page-9-0) [The Triagnle Inequality](#page--1-0)

[Order Structures](#page-12-0)

[Basic definitions](#page-13-0) [The Lack of Good Order Structure](#page--1-0)

The Field Properties

The Complex Numbers follows the following Field Properties and hence is a field.

1.
$$
x + (y + z) = (x + y) + z
$$
 and $(xy)z = x(yz)$ for all $x, y, z \in \mathbb{C}$. (Asso. of $+, \times)$

2. $x + y = y + x$ and $xy = yx$ for all $x, y \in \mathbb{C}$. (Comm. of $+, x$)

- 3. There exists 0, 1 such that $0 + x = x$ and $1x = x$ for all $x \in \mathbb{C}$. (Id. of $+$, \times)
- 4. For all $x \in \mathbb{C}$, there exists $y \in \mathbb{C}$ such that $x + y = 0$. ($Inv. of +$)
- 5. For all $0 \neq x \in \mathbb{C}$, there exists $y \in \mathbb{C}$ such that $xy = 1$. (lnv. of \times)

What is the geometric meaning of $+$ and \times ?

Addition is translate Multiplication is rotation with possibly a re-scaling.

KORKAR KERKER SAGA

Complex Conjugation

Definition Let $z \in \mathbb{C}$. Suppose $z := x + iy$ for $x, y \in \mathbb{R}$. We define \overline{z} := x – iy the complex conjugate of z.

Proposition (Planar representation and Complex conjugate) Let $z \in \mathbb{C}$. Then we have the following:

a) Re(z) =
$$
\frac{1}{2}(z + \overline{z})
$$

b) Im(z) = $\frac{1}{2i}(z - \overline{z})$

c) $z \in \mathbb{R}$ if and only if $z = \overline{z}$ (conjugate is trivial in real numbers)

Proposition (The star properties) and mul.) Let $z_1, z_2 \in \mathbb{C}$. Then we have the following star properties: (Complex Conjugate works well with add.

1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (compatible with addition) 2. $\overline{z_1z_2} = \overline{z_1} \cdot \overline{z_2}$ (compatible with multiplication) 3. $\overline{1} = 1$ (compatible with identity) 4. $\overline{\overline{z}} = z$ (involutive) Complex Conjugate $\frac{dy}{dx}$ + \rightarrow -Proposition (Conjugate - Modulus Formula) Let $z \in \mathbb{C}$. Then $z\overline{z} = |z|^2$. You have 3 minutes to prove all these properties. Question: Let z, $w \in \mathbb{C}$. Prove that $|zw| = |z||w|$ Proof using the Conjugate - Modulus Formula This is equivalent to proving $|zw|^2 = |z|^2|w|^2$. By the Conjugate modulus formula, we have the following $\mathcal{L} H.S = |zw|^2 = zw\overline{zw} = zw\overline{z}\overline{w} = z\overline{z}w\overline{w} = |z|^2|w|^2 = R.H.S$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

KORKAR KERKER SAGA

[Representing Complex Numbers](#page-2-0)

[Planar Representation](#page--1-0) [Polar Representation and the Euler Forumula](#page--1-0)

[Algebraic Structures](#page-5-0)

[Field Properties](#page--1-0) [Complex Conjugation](#page--1-0)

[Distance Structures](#page-9-0) [The Triagnle Inequality](#page--1-0)

Distance => Nearness between two points => convergence, limit, differentiation and so on. (topology)

◆ロ→ ◆母→ ◆ミ→ ◆ミ→ → ミ

 $2Q$

[Order Structures](#page-12-0) [Basic definitions](#page-13-0) [The Lack of Good Order Structure](#page--1-0)

Basic Inequalities

Theorem (Triangle Inequality for C) Let $z_1, z_2 \in \mathbb{C}$. Then we have the following,

 $|z_1 + z_2| \leq |z_1| + |z_2|$

In fact, The Triangle Inequality for $\mathbb C$ is equivalent to the Cauchy-Schwarz Inequality for two pairs of real numbers.

Theorem (Cauchy-Schwarz Inequality)

Let $x_i, y_i \geq 0$ be a finite list of non-negative real numbers. Then we have the following

$$
\sum_{i} x_i y_i \leq (\sum_{i} x_i^2)^{\frac{1}{2}} (\sum_{i} y_i^2)^{\frac{1}{2}}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

An Alternate Proof of Triangle Inequality

Proof of Triangle Inequality using Cauchy-Schwarz Inequality. Let $z_1 = x_1 + ix_2$ and $z_2 = y_1 + iy_2$ where $x_1, x_2, y_1, y_2 \in \mathbb{R}$. The Triangle Inequality can be rewritten as

$$
\left(\sum_{i=1,2}|x_i+y_i|^2\right)^{\frac{1}{2}} \leq \left(\sum_{i=1,2}|x_i|^2\right)^{\frac{1}{2}} + \left(\sum_{i=1,2}|y_i|^2\right)^{\frac{1}{2}}
$$

This follows immediately from the following chain of inequalities $\sum |x_i + y_i|^2 \leq \sum |x_i + y_i|(|x_i| + |y_i|)$ $i=1,2$ $i=1,2$ $=$ \sum $i=1,2$ $|x_i + y_i||x_i| + \sum$ $i=1,2$ $|x_i + y_i||y_i|$ $\leq (\sum |x_i + y_i|^2)^{\frac{1}{2}} ((\sum |x_i|^2)^{\frac{1}{2}} + (\sum |y_i|^2)^{\frac{1}{2}})$ $i=1,2$ $i=1,2$ $i=1,2$ (Triangle inequality for real numbers)

U
∢DD (PD) (ED) (ED) (PD)

[Representing Complex Numbers](#page-2-0)

[Planar Representation](#page--1-0) [Polar Representation and the Euler Forumula](#page--1-0)

[Algebraic Structures](#page-5-0)

[Field Properties](#page--1-0) [Complex Conjugation](#page--1-0)

[Distance Structures](#page-9-0) [The Triagnle Inequality](#page--1-0)

[Order Structures](#page-12-0)

[Basic definitions](#page-13-0) [The Lack of Good Order Structure](#page--1-0)

KORK EXTERNE PROVIDE

Basic definitions

Let \leq be a relation on \mathbb{C} . Then (math 1050)

- 1. we call \leq *reflexive* if $x \leq x$ for all $x \in \mathbb{C}$
- 2. we call \leq transitive if $x \leq y$, and $y \leq z$ imply $x \leq z$ for all $x, y, z \in \mathbb{C}$
- 3. we call \leq symmetric if $x \leq y$ and $y \leq x$ imply $x = y$ for all $x, y \in \mathbb{C}$
- 4. we call \leq total if $x \leq y$ or $y \leq x$ for all $x, y \in \mathbb{C}$
- 5. we call \leq compatible with addition if $x \leq y$ implies $x + z \leq y + z$ for all $x, y, z \in \mathbb{C}$
- 6. we call \leq compatible with product if $x \leq y$ implies $xz \leq yz$ for all $x, y \in \mathbb{C}$ and $0 \leq z$

We call \leq a *preorder* if it is reflexive and transitive; we call a symmetric preorder a *partial ordering*; and we call a total partial ordering a total ordering.

The Lack of Good Order Structure

Theorem

There is no total ordering compatible with both addition and product for C.

Proof.

We shall give a proof by contradiction. Suppose there is one,denoted by ≤.

By totality either $0 \leq i$ or $i \leq 0$. Let's suppose $0 \leq i$.

By product compatibility, we have $0 \le i^2 = -1$.

From this, we have $0 \leq 1$ by product compatibility again, or we have $1 \leq 0$ by adding 1 on both sides.

Then by symmetry, $1 = 0$, which is false.

Similar arguments exist for $i < 0$.

By contradiction, we must have that such a total ordering cannot exist in the first place.

Thank you!

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @