
MATH 2230A - HW 8 - Solutions
Full solutions at P.219 - 220 Q4, 6, 7, 8

Commonly missed steps in Purple and common mistakes at the back

Through the solution, we use B(x, r), B(x, r), C(x, r) to denote open balls, closed balls and circles
(boundaries of balls) respectively.
We recall the following important facts for power series. In the following, we would call f(z) :=∑∞
n=0 an(z − z0)n where an ∈ C for all n ∈ N a formal power series centered at z0 ∈ C (which does

not necessarily converge).

Theorem 0.1 (Taylor’s Theorem (as stated in the textbook)). Let z0 ∈ C and r > 0. Suppose f is
analytic on the open ball B(z0, r), then its Taylor seires at z0 converges pointwise to itself, that is,
to f on B(z0, r). So we have for all z ∈ B(z0, r),

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

Remark. This is in fact equivalent to the version stated in the Lecture Note/ HW 7 solution. The
proof was shown in the last solution in HW7.

Theorem 0.2 (Convergence of Power Series). Let f(z) be a formal power series centered at z0.
Suppose f(z) converges at some w 6= z0. Then f converges on the open ball B(z0, Rω) where
Rω := |z − w|. In fact f(z) converges absolutely on B(z0, Rω)

Remark. This shows that if a power series converges on some points of the circle C(z0, r) then it
converges on the open disk B(z0, r). That is why a power series always converges on some open
disks (with some points on the boundary).

Theorem 0.3 (Uniform Convergence on Power Series). Let f(z) be a formal power series centered
at z0 that converges on an open ball B(z0, r) with r > 0. Then for all 0 < ρ < r, the power series
converges uniformly on B(z0, ρ).

Remark. Please note that it does NOT follow that f(z) converges uniformly on B(z0, r)

Theorem 0.4 (Differentiation of power series). Let f(z) :=
∑∞
n=0 an(z − z0)n be a formal power

series centered at z0 and converges on B(z0, r) for r > 0. Then f is complex differentiable for all
z ∈ B(z0, r) and we have

Dz(f(w)) = f ′(z) =

∞∑
n=0

Dz(an(w − z0)n) =

∞∑
n=1

ann(z − z0)n−1

where Dz(g) := g′(z) for g analytic at z.

Remark. This is mainly because f converges uniformly on some neighborhood of z for any z ∈
B(z0, r).

Theorem 0.5 (Integration of Power Series). Let f(z) :=
∑∞
n=0 an(z − z0)n be a formal power

series centered at z0 and converges on B(z0, r) for r > 0. Then for any (continuously differentiable)
contour C within the open ball, we have∫

C

f(z)dz =

∞∑
n=0

∫
C

an(z − z0)ndz

Remark. This is mainly because we can enclose the contour C within some ball B(z0, ρ) where ρ < r
on which the power series converges uniformly. (This is possible as we consider contours C to be
parametrized by compact (closed and bounded) intevals through some continuous γ : [a, b]→ C. One
way to see why this is useful is to consider the map t 7→ |γ(t)|. By the extreme value theorem, such
ρ exists as a result. Then integral-sum exchange formula then follows by the uniform convergence
of power series.

1



Solutions

P.219-220

Solution. It follows from a simple substitution. Please note that you have to verify why |1/1− z| < 1
before doing the substitution as the first identity is valid only for |z| < 1.

Solution. When z 6= 0, it is clear that f is holomorphic at z as f is quotients of elementary things
there with non-zero denominator. It remains to show the analyticity of f at 0.
Note that cos z is entire. Hence by Taylor’s Theorem, its Taylor series at 0 converges everywhere.

In particular, we have cos z =
∑∞
n=0

(−1)n
(2n)! z

2n for all z ∈ B(0, r) for some r > 0. Hence in a deleted

neighborhood B(0, r)\{0} of 0, we have

f(z) =
1− cos z

z2
=

1

z2
(1− (1− z2

2!
+
z4

4!
+ . . .)) =

1

z2
(
z2

2!
− z4

4!
+ . . .) =

1

2
− z2

4!
+
z4

6!
− . . .

where the (formal) power series h(z) = 1
2−

z2

4! + z4

6! − . . . in fact converges at z = 0 with h(0) = 1/2 =
f(0). Therefore, f(z) = h(z) on B(0, r) and hence f is a power series on B(0, r). By differentiability
of power series, f is analytic at 0.

Solution. It is clear that f is analytic if z 6= ±π/2. You have to check analyticity at both points
±z/2. The argument is similar to that of Question 4 and 7 except that in the last line you should
claim that f coincides with a product of a power series with some other analytic functions (which
is also analytic on the region concerned) instead of writing f coincides with a power series.
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Solution. Let f(z) := 1/z. Note that f is analytic everywhere except at z = 0. In particular, f(z)
is analytic on the open ball B(1, 1). By Taylor’s theorem, f is its Taylor series (centered at 1) on
B(1, 1), with

f(w) =
1

w
=

∞∑
n=0

(−1)n(w − 1)n

for all w ∈ B(1, 1). Let z ∈ B(1, 1) and let C be a contour from 1 to z insides B(1, 1). Then by the
integrability of power series, we have∫

C

1

w
dw =

∞∑
n=0

∫
C

(−1)n(w − 1)ndw

Note that now the functions f(w) = 1/w have the anti-derivative Logw on the open, connected
region B(1, 1) since B(1, 1) is away from the principal branch cut while (w − 1)n, n ∈ N clearly
has antiderivatives on B(1, 1). Applying the fundamental theorem of contour integral, we have
independence of paths for the above integrals and so we have

Log(z)− Log(1) =

∫
C

1

w
dw =

∞∑
n=0

∫
C

(−1)n(w − 1)ndw

=

∞∑
n=0

(−1)n(w − 1)n+1

n+ 1

]z
1

=

∞∑
n=1

(−1)n+1(z − 1)n

n

The result follows as Log(1) = 0

Solution. Let Ω := {z||z| ∈ (0,∞); arg z ∈ (−π, π)} be domain in question. Note that Ω =
C\(−∞, 0], which is the complement of the principal branch cut.
When z 6= 1, by the definition of Ω, Log(z) is analytic on Ω (NOT on C\{1}) (why?) while it is clear
that z − 1 is non-zero analytic. Hence, f is analytic when z 6= 1. It remains to show the analyticity
of f at z = 1.
Note that Log z is analytic on B(1, 1), which is away from the branch cut. Hence by Taylor’s Theo-

rem, its Taylor series at 1 converges to itself on B(1, 1). By Q6, we have Log z =
∑∞
n=1

(−1)n+1(w−1)n
n

for all z ∈ B(1, 1). Hence in a deleted neighborhood B(1, 1)\{0} of 1, we have

f(z) =
Log z

z − 1
=

1

z − 1
((z − 1)− 1

2
(z − 1)2 +

1

3
(z − 1)3 − . . .) = 1− 1

2
(z − 1) +

1

3
(z − 1)2 − . . .
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where the (formal) power series h(z) = 1− 1
2 (z− 1) + 1

3 (z− 1)2− . . . in fact converges at z = 1 with
h(1) = 1 = f(1). Therefore, f(z) = h(z) on B(1, 1) and hencef is a power series on B(1, 1). By
differentiability of power series, f is analytic at 1.

Solution. Since f is analytic at z0, by definition, f is analytic on B(z0, r) for some r > 0. By
Taylor’s theorem, the Taylor Series of f centered at z0 converges to itself on B(z0, r). Hence, for all
w ∈ B(z0, r), we have

f(w) =

∞∑
n=0

f (n)(z0)(w − z0)n

n!
=

∞∑
n=m+1

f (n)(z0)(w − z0)n

n!

Therefore in the deleted neighborhood B(z0, r)\{z0} of z0, we have

g(z) =
f(z)

(z − z0)m+1
=

∑∞
n=m+1

f(n)(z0)(z−z0)n
n!

(z − z0)m+1
=

∞∑
n=m+1

f (n)(z − z0)n−(m+1)

n!
=

∞∑
n=0

f (n+m+1)(z0)(z − z0)n

(n+m+ 1)!

where the formal power series h(z) :=
∑∞
n=0

f(n+m+1)(z0)(z−z0)n
(n+m+1)! converges at z = z0 with h(z0) =

f(m+1)(z0)
(m+1)! = g(z0). Therefore, g(z) = h(z) on B(z0, r) and hence g is a power series on B(z0, r). By

differentiability of power series, f is analytic at z0.

4



Solution (Hints only).
First you should show that if a the formal series converges f(z) :=

∑∞
n=1 bn(z − z0)−n converges at

some point w ∈ C where w 6= z0, then f converges for all z with |z − z0| > |z0 − w|. In fact the
latter converges absolutely.

Next consider the Annulus in question being A(z0, r, R) := {z ∈ C : r < |z − z0| < R} where
0 < r < R. One should note that the contour C could be enclosed by a slightly smaller Annulus

A(z0, r
′, R′) where r < r′ < R′ < R and the sum

∑∞
n=0 bn

g(z)
(z−z0)n converges uniformly on C. Ex-

plicitly we can do the following: since A(z0, r
′, R′) ( A(z0, r, R), we can take z′ ∈ A(z0, r, R) with

ρ := |z′ − z0| ∈ (r, r′). Then for all z ∈ C and n ∈ N, we have∣∣∣∣bn g(z)

(z − z0)n

∣∣∣∣ ≤ |g(z)| ρn

(z − z0)n
bn
ρn
≤ |g(z)|

∣∣∣∣ bnρn
∣∣∣∣ ρnr′n ≤MN

ρn

r′n

where M,N ∈ R are independent of z ∈ C such that |g(z)| ≤ M and
∣∣∣ bnρn ∣∣∣ ≤ N . The existence

of the former is due to the extreme value theorem as g is continuous on C while the existence of

the latter follows as
∣∣∣ bnρn ∣∣∣ is a bounded sequence as the series

∑∞
n=1 bn(z − z0)−n converges abso-

lutely at z = z′ where |z0 − z′| = ρ. The uniform convergence then follows from the convergence
of the geometric series with ratio ρ/r′ as ρ

r′ < 1 and the fact that this convergence is independent of z.

After proving whose uniform convergence on the contour C, the integral-sum exchange formula
follows similar as in the proof of the Taylor series.
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