Side-pairing transformations,
Elliptic and Parabolic cycles,

Poincaré’s

heorem Cf.

Kung Mik Kei 1155108503
Wong Wai Ching 1155108896
MATH4900E Group 3

s S S




Content

1. Side-pairing transformations
2. Elliptic cycles
3. Generators and Relations

4. Poincaré’s Theorem
i)  the case of no boundary vertices
i) the case of boundary vertices

5. Reference




1. Side-pairing transformations




Recall

Defintion (hyperbolic polygon)

A hyperbolic polygon is a closed convex set in the hyperbolic plane that can be expressed as
the intersection of a locally finite collection of closed half-planes.

Defintion (Convex set)

A subset X of the hyperbolic plane is convex if for each pair of points x and y in X,
the closed hyperbolic line segment /,, joining x to y is contained in X




Recall

Definition (Discrete group)

A subgroup G C SL(2,R) is a discrete group if G has no accumulation points in SL(2,R).

Accumulation points
x is said to be an accumulation point in A if every open set containing x contains at least one other point from A.




Recall

Definition (Fuchsian group)

It is a discrete subgroup of either Mob(H) or Mob(D)

Definition (Dirichlet polygon)
Each Fuchsian group possesses a fundamental domain. The purpose of the following slides is to give a method for

constructing a fundamental domain for a given Fuchsian group. The fundamental domain that we construct is called a

Dirichlet polygon.




Side-pairing transformations

Definition

Let D be a hyperbolic polygon. A side s € H of D is an edge of D in H equipped with an orientation.

That is, a side of D is an edge which starts at one vertex and ends at another.

Let T" be a Fuchsian group and let D(p) be a Dirichlet polygon for I'.
We assume that D(p) has finitely many sides. Let s be a side of D.
Suppose that for some ye€ I' \ {Id}

we have that ~(s) is also a side of D(p).

Note that -,—1. € I'\ {/d} maps the side 7(s) back to the side s.

Then, the sides s and 7(s) are paired and call v a side pairing transformation.




Side-pairing transformations

Remark

It is possible that s and 7(s) are the same side, with opposing orientations.

Then, s is paired with itself.




Side-pairing transformations

Recall (Perpendicualr bisector)

Let z,, zo € H Recall that [z, 2,] is the segment of the unique geodeic from z; to z,.
The perpendicular bisector of [z, z,] is defined to be the unique geodesic perpendicular to [z, z,]

that passes through the midpoint of [z, z,].




Side-pairing transformations

ways to find a side-pairing transformation associated to it

Let s be a side of a Dirichlet polygon D(p), then we can see that s is contained in the
perpendicular bisector of the segment [p, g(p)|, for some g€ I'\ {Id}.

1

It shows that the Mobius transformation v = ¢g~' maps s to another side of D(p)




Side-pairing transformations

In this figure, we always denote v, as the side pairing transformation associated to the side s.

And this transformation is v = g_]




Side-pairing transformations

Example(1)

Let I' = {v,|7,(2) = z+n,n € Z} be the Fuchsian group of integer translations

| 1
Let p=1i, then D(p) = {z € H| =55 Re(z) < 5} is a Dirichlet polygon for T'.

1
Let s be the side and s = {z € H|Re(z) = —5}
Let g(z) =z—1, then s is perpendicular bisector of [p,p—1] = [p,g(p)]
Since g(p) =p—1

Then, v, =g '=2+1

. . . 1
Therefore, ~ is on the other side such that v, = {z € H|Re(z) = 5}




Side-pairing transformations

Example(1) - continued




Side-pairing transformations

Recall

The modular group is defined to be

az+b
cz+d

PSL(?,Z)z{ |a,b,c,d,€Z,ad—bc:1}

Let k > 1 and let p=ki. The Dirichlet polygon for the modular group PSL(2,Z) is

1 1
D(p) ={z € Hllzl > 1,—5 < Re() <3}




Side-pairing transformations

Example(2)

Let I' =PSL(2,Z) and we have D(p) = {z € Hj —% < Re(z) < %, |z| > 1 } and p =ik
The polygon have 3 sides

8 = {z € H|Re(z) = —%, |z| > 1}

8y = {z € H|Re(z) =%, |2] > 1}

{ZG]HH; —%<Re(z)<%,|z|:1 }

S3




Side-pairing transformations

Example(2) - continued

By example , we know that ~y =z+1, and it pairs s; and s,

On the other hand, the side pairing transformation associated to the side s, is v, =z—1
For sy, it is perpendicular bisector of [p,—1/p], the v;'(p) = —1/p,

Then,~,, =—1/z

Note that, ~, reverses the orientation of s,




Side-pairing transformations

Example(2) - continued




Side-pairing transformations

Example(3)

Let I' = {~,|N,(z) =2"z,n € Z }. Find the side pairing transformations for the Dirichlet polygon.

D(p) = {ZEH‘\/‘<R€(Z)<\/—}




Side-pairing transformations

Example(3) Solution

Let p=1i and let v,(z) = 2"z.

There are two sides.

81:{z€C||z|:%}
s, ={z€C||z| =v2}

1
Since we have y_,(p) =2"'p= 5P the s, is the perpendicular bisector of [p,~_,(p)]

Hence,

Vs, (2) =771 (2) = 22




Side-pairing transformations

Using a diagram to represent the side pairing transformation

Vs (9)

® The sides with an equal number of arrow are paired.
® The pairing preserves the direction of the arrows denoting the orientation of
the sides.




Summary of side pairing transformation

e Way to find a side-pairing transformation associated to it

1. Construct D(p)

2. s is contained in the perpendicular bisector L, (g) of the geodesic segment [p, g(p)], for some g € '\ {Id}.

3. Show~ = g~! maps s to another side of D(p)

e Use a diagram to represent side

pairing transformation




2. Elliptic cycles




Recall: Side-pairing transformations

Definition

Let I" be a Fuchsian group and let D(p) be a Dirichlet polygon for T'.
We assume that D(p) has finitely many sides. Let s be a side of D.
Suppose that for some ye I' \ {Id}

we have that 7(s) is also a side of D(p).

Note that -, —1.€ '\ {Id} maps the side 7(s) back to the side s.

Then, the sides s and 7(s) are paired and call v a side pairing transformation.




Recall: Side-pairing transformations

Using a diagram to represent the side pairing transformation

Vs (9)

® The sides with an equal number of arrow are paired
e The pairing preserves the direction of the arrows denoting the orientation of the
sides.




Elliptic cycles

Note that,

Each vertex v of D is mapped to another vertex of D under a side pairing

transformation associated to a side with end point at v.

Each vertex v of D has two sides s and *s of D with end points at v. Let the pair (v, s)
denote a vertex v of D and a side s of D with an endpoint at v. We denote by *(v, s) the

pair comprising of the vertex v and the other side *s that ends at v.




Elliptic cycles

Definition
Let v =v, be a vertex of D and let s, be a side with an endpoint at v,.
Let ~; be the side pairing transformation associated to the side s,.
And it maps s, to another side s; of D

Let s; =~;(sp) and v; =~;(vy), and (v;, S1) is a new pair

Now, for *(vy, $),

Let ~, be the side pairing transformation associated to the side *s;, and ~,(*s;) = s, and ~,(v;) = vy
Note that v, is also a vertex of D

And repeat the above inductively




Elliptic cycles
Definition-continued

As there are only finitely many pairs (v, s),

this process of applying a side pairing transformation followed by applying * must eventually return to the initial pair (v, s;).

Let n be the least integer n > 0 for which (v, *s,) = (vq, 8g)- o & %
] / .
0 3_\’ 1 -~ 1
S0 S1 *S1
Y2 'l"z *
59
% ) = v;
Si *S;

Ui41 =




Elliptic cycles

Definition-continued

The sequence of vertices &€ = v9g — v — -+ — v,—1 called an elliptic cycle.
The transformation~,~, ;...7»7; is called an elliptic cycle transformation,
As there are only finitely many pairs of vertices and sides, we see that there are only finitely

many elliptic cycles and elliptic cycle transformations.




Elliptic cycles




Elliptic cycles

Example




Elliptic cycles

Example-continued

There are two elliptic cycle in this figure.
The first one is A - F — E — B — D and the elliptic cycle transformation ~;'~3 17 1.,

And here is the sequence of pairs of vertices and sides :

(2) » ()




Elliptic cycles

Example-continued

The another elliptic cycle is C with associated elliptic cycle transformation ~;.

($)3(S)>(2)




Elliptic cycle Transformation

Definition

Let v be a vertex of the hyperbolic polygon D.

We denote the elliptic cycle transformation associated to the vertex v and the side s by ~, ..




Elliptic cycles
Remark

Suppose we had started at (v, xs) instead of (v, s).
Then we have an elliptic cycle transformation ~, ..

We also know that ~, =, L

2. Suppose we started at (v;,s;) instead of (vy,sp)

Then, the elliptic cycle transformation will become

Yo;,s, = ViVi—1--V1Vn-Yi+2Vi+1




Elliptic cycles
(Recall) Example

F




Order of an elliptic cycle
Definition

Let ~ € Mobius transformation. We say that ~ has
finite order if there exists an integer m > 0 such that ~™ =Id

We call the smallest positive integer m to be the order of ~.




Order of an elliptic cycle

Proposition (1)

Let I' be a Fuchsian group and let v € I be an elliptic element. Then there exists an integer k > 1 such that ~* =1Id

Proof of Proposition (1)

Recall a specific example of Fuchsian group in the upper half plane,

cos(0)z +sin(0)

Let ~(z) = —sin(0)z + cos(9)

be a rotation around i.




Order of an elliptic cycle

Proof of Proposition (1)-continued

(cosB) z+sinb

L =
<t 1(z) (—sinB)z + cos6

(2) — cos(mb) z+ sin(m0)

Then, 7" (2) = m>1

—sin(m0)z + cos(mb)’

Unless 6 =7 k for some k > 1, ~ cannot be isolated and it is not in Fuchsian group

Then, 6 =7 k and then ~* =1Id.




Order of an elliptic cycle

Proposition (2)

Vvg,50> Tv;5;  have the same power.

Proof of proposition

Suppose the elliptic vertex cycle is
U0_>’U1%'”_>’Un_1
Then, the side pairing transformation is

A/vu,s“ - ’Yn A/'n—l o ,71




Order of an elliptic cycle

Proof of Proposition - continued

Let the order of ~, , is m and it is positive

For ~, ., the elliptic cycle is

Yoy,s; = ViYim1-- V1 VnVig1

= (YiYie1++ Y1) Yoy 5, Vive11) ™"

Then,

m

Yors, = (Viticto+ M) Vogrs Yir V1) ™ (ViVim1 M) Voo (YVire1) ™
-'-(7"1i"/1—1---“/'1)")"u[,.sn(?"i---’*/l) :

= (YYic1-N) Vg, (Vi N1 )~

= (¥WYi-1-M)Vieem) ™!

—1d Then, its order is m too.




Order of an elliptic cycle

Proposition (3)

If the order of ~ is m, then the order of N~! isalso m.

Proof of proposition

Suppose the order of ~ is m.
Then,

Y™ =Id

Yy Lot =Id- (v 1))
Id=(x=2)™

Then, the order of ! is equal to m too.




Angle Sum

Definition

Let Z v be the internal angle of D at the vertex v.
The elliptic cycle e: vy —v; — - - -+ = v,_; of the vertex v=v,
We can write sum(g) be the angle sum

sum(e) = Lug+ ... + Lv,_,




Angle Sum

Proposition

Let I' be a Fuchsian group with Dirichlet polygon D with all vertices in H
and let € be an elliptic cycle.
Then, there exist some m_, > 1 such that

m_sum(e) =2m




Accidental cycle.

Definition
If an elliptic cycle transformation is the identity

then we call the elliptic cycle an accidental cycle.

Remark

The interior angle sum of an accidental elliptical cycle 1s 2n

Proof by the previous proposition, since it is an identity,

then, m. =1 and sum(e) =2x




Summary of Elliptic cycles

Elliptic cycle
Elliptic cycle transformation
Order of elliptic cycle

Angle sum
Accidental cycle

e W e




3. Generators and Relations




Recall
Definition

Additive Group
Binary Operation:

Identity element:
Inverse of the element a:

Multiplicative Group
Binary Operation:
Identity element:
Inverse of the element g:

addition ( +)
0
a

multiplication ( - )
1

g-l

Group
1. Closure

2. Associativity
3. Identity
4. Inverse




Generater
Definition
Let T" be a group.

We say that a subset S = {v1,...,7} C I'is a set of generators if every element
of T' can be written as a composition of elements from S and their inverses.

We write T =(S).




Generater

Example(1)
1 is a generator of the additive group Z .
Letne Z,

Case 1: n >0 can be written as 1+:-:+1 (n times)
Case 2: n <0 can be written as (-1)+:--+(-1) (-n times)

Case 3: n=0can be writtenas (-1) + 1




Generater

Example(2)

{(1,0), (0, 1)} is a set of generators of the additive group Z2? = {(n,m) | n,m € Z}.

Example(3)

w = e2™/Pis 3 generator of the multiplicative group of pth roots of unity {1,w, ... , wP~11




Generater

Remark
In general, a group have many different generating sets.
e.g. {2,3}, {314,315} are sets of generators of Z.

Note that 1 =3 - 2,

Hencen=3+---+3+(-2)+---+(-2) where there are n 3s and n -2s.




Generater

Theroem

Let T be a Fuchsian group.

Suppose that D(p) is a Dirichlet polygon with Areag(D(p)) < 00.

Then the set of side-pairing transformations of D(p) generate I .




Generater

Example

B az+b
cz+d

Let T be PSL(2,Z) = {’7(z)

| a,b,c,d € Z, ad—bc:l}.

A fundamental domain for I'is D(p) = {z € H | |2| > 1, —1/2 < Re(z) < 1/2}.
where p = ik for any k > 1.

Recall that the side-pairing transformationsare 2 — z + landz — —1/z.

Then followed by the theorem,

PSL(2,Z) =(z— z+ 1,2 +— —1/2)




Word

Definition
Let S be a finite set of k symbols.
LetSt={a"l|a € S}

Consider the concatenation of symbols chosen from Su S1,

subject to the condition that concatenations of the formaa—! anda—'a are removed.

Such a finite concatenation of n symbols is called a word of length n.




Word

Example
LetS={a,h,n,o}.
Then SUS~'={a,h,n,o0,a', h?, nt, ot}

The followings are word in S:

ah, no, nto?, nanoha, oloohhhh, e(empty word)
The followings are not word in S:

oo, aaahhhh, cuhk




Free Group

Definition

Let W, = {all words of length n}
= {wn =aj---an | a; € SUS_l, aj+1 #aj_l},

Let e denote the empty word and W, = {e}.

We define Fi = U W, to be the free group on k generators.

n>0




1)
2)

3)

4)

Free Group

The free group is a group.

Proof

Well-defined: The concatenation of two words is another word.
Associative: The concatenation is associative by observation.

Existence of an identity: The empty word e is the identity element
such thatif w =ay---a, € F, then we = ew = w.

Existence of inverses: If w = a1 - - - a,, is a word, then

wl =a1--.a7tsuchthat ww™! =w lw =e.




Generator and Relation
Definition

.,ar} be a finite set of symbols, w1, ..., wp, be a finite set of words,

Let S = {al,..

We define the group T = (aq,...,ax | w1 = ... = w,, =€)
to be the set of all words of symbols fromS U S,

subject to the following conditions:
1) any subwords of the formaa—! or a—laare deleted
2) any occurrences of the subwords wy, ..., w,,are deleted.

1

We call the above group T" the group with generatorsay, ..., arand relations wq, ..., wy,.




lIsomorphism
Definition
Let T';,T's be two groups.

A map ¢:T'1 = I'z is an isomorphism if

1) ¢is a bijection (surjective + injective)
2) p(mny2) = d(n)P(r2) V1,72 € T

We say that I';,T'; are isomorphic.




Finitely Presented

Definition

We say that a group T is finitely presented if it is isomorphic to a group in the form:
(a1,...,a w1 = ... = wy, =¢€)

with finitely many generators and finitely many relations.

We say {(a1,...,ax | wy =...= w,, = e) is a presentation of T".




Finitely Presented

Example (1)

The free group on k generators Fi, = U W, is finitely presented,

n>0
where W, = {all words of length n}
= {wn=a1---an|aj€SUS_1, ajil#aj_l},

There are no relations for the free group on k generators.




Finitely Presented

Example(2)
The multiplicative group of pth roots of unity {1,w,...,wP™1} is finitely presented
where w = €2m/P

Using the group isomorphism w — a, we can write it in the form:

(a | a? =e).




Finitely Presented

Example(3)
The additive group Z is finitely presented.
It is actually the free group on one generator: (a) = {a" | n € Z}.
Note that @ ™™ = q"a™ vaeZ,

Hence (a) is isomorphic to Z under the isomorphism g™ — 7.




Finitely Presented

Example(4)
The additive and abelian group Z2 = {(n,m) | n,m € Z} is finitely presented.

The free group (a, b) is not abelian because ab # ba.
ba =bae = ba(a"'b"lab)
= blaa )b tab
= beb 'ab
= bblab
= ab.
Hence, we add the relation ¢=1p~1gb such that {a,b | a~ b7 ab =€) = {a™b™ | n,m € Z}

Using the group isomorphism (1, m) — a™b™ , the group is isomorphic to Z>2




Finitely Presented

Example(5)
The group {(a,b | a* = b? = (ab)? = e)is finitely presented.
By computation, the elements in this group are: e, a, a2, a’, b, ab, a®b, a>b.
This is actually the dihedral group.

a : an anti-clockwise rotation through a right-angle

b : reflection in a diagonal




Summary

1) Generator
2) Word

3) Free Group
4) Isomorphism

5) Finitely Presented




4. Poincaré’s Theorem




Recall

Elliptic cycle

The sequence of vertices £ = vg — v1 — --- — v,_1 is called an elliptic cycle.

Elliptic cycle transformation

The transformation "nYn—1-"-7271 is called an elliptic cycle transformation.

Let v be a vertex of the hyperbolic polygon D and let s be a side of D with an end-point at v.

We denote the elliptic cycle transformation associated to the pair (v,s) by Yv,s .




Recall

Angle Sum

Let Z v be the internal angle of D at the vertex v.
The elliptic cycle € vy =v; — -+ - = v,_; of the vertex v=yv,
We can write sum(c) be the angle sum

surmi(e) = LUyt L5




Recall

Elliptic Cycle condition

An elliptic cycle & satisfies the elliptic cycle condition
if there exists an integer m 2 1, depending on £such that

msum(&) = 2.




Recall

Half-plane

Let ¢ be a geodesic inH. Then ¢ divides H into two components. These components are
called half-planes.

Convex Hyperbolic Polygon

A convex hyperbolic polygon is the intersection of a finite number of half-planes.




Poincaré’s Theorem (no boundary vertices)

Let D be a convex hyperbolic polygon with finitely many sides.

Suppose:

1) All vertices lie inside H and that D is equipped with a collection G of
side-pairing Mobius transformations.

2) Noside of D is paired with itself.

3) The elliptic cycles are &;,....&, .

4) Each elliptic cycle &; of D satisfies the elliptic cycle condition:
for each &; there exists an integer m;2 1 such that m; sum(&;) = 2.




Poincaré’s Theorem (no boundary vertices)

Then:
1) The subgroupT = (G) generated by G is a Fuchsian group.

2) The Fuchsian group I"has D as a fundamental domain.

3) The Fuchsian group I"can be written in terms of generators and relations as follows.
Think of Gas an abstract set of symbols.
For each elliptic cycle ;, choose a corresponding elliptic cycle transformation
Y = Yv,s (for some vertex v on the elliptic cycle)
This is a word in symbols chosen from Gug—! .
Then Tis isomorphic to the group with generators~s € G and relations cycle;” :

F={(peg | =n?==5"=e¢).




Poincaré’s Theorem (no boundary vertices)

Remark:
The second hypothesis that “No side of D is paired with itself” is not a real restriction.

We can introduce another vertex on the mid-point of that self-paired side,
thus dividing the side into two smaller sides which are then paired with each other.

Lo
S1 S2

~_

Vs

Vo U1

The side s is paired with itself. By splitting it in half, we have two distinct sides that are paired




Recall

Corollary

Suppose Y is a Mobius transformation of H with three or more fixed points.

Then Yis the identity (and so fixes every point).




Remark example:

Suppose that s has end-points at the vertices vgandwv.
Introduce a new vertex vq at the mid-point of [vg, v1].

Notice that vs(v2) = va .

We must have thatvs(vo) = v1 and vs(v1) = vo (by the Corollary).
Let 57 be the side [Ug, v2]and let S5 be the side [vg, v1].

Then 7(s1) = s2 and ~,(s2) = 5.

Hence ;s pairs the sides sjand ss.

Notice that the internal angle at the vertex vz is equal to TT.

Poincaré’s Theorem (no boundary vertices)

Suppose that s is a side with side-pairing transformation s that pairs s with itself.

V2

S1 S2

~_ 7

Vs

U1




Poincaré’s Theorem (no boundary vertices)

Example:
Consider a regular hyperbolic octagon with each internal angle equal to T1/4 inD .
Label the vertices of such an octagon anti-clockwise v1, ..., vg.

Label the sides anti- clockwise S1, ..., Sg so that
side S-j occurs immediately after vertex Vj -




Example - continue (Zi) = (m)_*’(M)

53 S4

i
/N
» <
o =
N——

1

5 (2)2(3)
S92 S3

¥ (2)+(2)
S1 82

¥ (2)+(3)
S4 S5

s (5) (%)
S7 S8

5 (2)2(7)
S6 S7

w ()= (%)
S5 S6
’74_1 * U1
S1

E =

Therefore, there is just one elliptic cycle:

Poincaré’s Theorem (no boundary vertices)

V1 — V4 — V3 — V2 — Vg — V8 — V7 — Vg.

with associated elliptic cycle transformation: v; *v3 1747375 71 T r2m




Poincaré’s Theorem (no boundary vertices)

Example - continue

The internal angle at each vertex is 1T/4,
Then, the angle sum is 811/4 =21T.
Hence the elliptic cycle condition holds (withmg = 1).

By Poincaré’s Theorem,
the group generated by 71, - - -, Y4 generate a Fuchsian group.

We can write this group in terms of generators and relations as follows:

V1,72, 13574 | 2 s T vavs v P e = e).




Recall

Half-plane

Let ¢ be a geodesic inH. Then ¢ divides H into two components. These components are
called half-planes.

Convex Hyperbolic Polygon

A convex hyperbolic polygon is the intersection of a finite number of half-planes.




Free Edge
Definition

When a convex hyperbolic polygon has an edge lying on the boundary,

such edge is call a free edge.
(1)




Parabolic Cycle Transformation

Let D be a convex hyperbolic polygon with no free edges.
Suppose that each side s of D is equipped with a side-pairing transformation 7s.

Suppose the half-plane bounded by s containing D is mapped by the isometry s
to the half-plane bounded by ~;(s) but opposite D.

Mobius transformations of Hact ondH and map 0H:o itself.

Each side-pairing transformation maps a boundary vertex to another boundary vertex.




Parabolic Cycle Transformation

Definition

Let v = v be a boundary vertex of D and let s = s( be a side with an end-pointatv.

We call P = vg — --- — v,_1a parabolic cycle

with associated parabolic cycle transformation Yv.s = Yn - 71 .




Parabolic Cycle Transformation

Example
A 5 D * D
(4) > (2)>(2)
vt AN « (A
% [2a) 5 )
Hence we have a paraboliccycle A — D
with associated parabolic cycle transformation 5 "1 .

() * (2)>()
() () !
> (n)> ()
5 (n)2(5)

Hence we have the ellipticcycle B - FF - E — C
with associated elliptic cycle transformation 77 73 'v27s .

=

1+

1=




Definition

Parabolic Cycle Condition

A parabolic cycle P satisfies the parabolic cycle condition if

for some (hence all) vertex v € P, the parabolic cycle transformatiory.,s
is either a parabolic Mébius transformation or the identity.

Recall
Let v be a Mobius transformation of H .
If 7Y has: Then 7 is:
Three or more fixed points The identity
Two fixed points in gHand none in H Hyperbolic
One fixed point in 9Hand none in H Parabolic

One fixed point in Hand none in 0H

Elliptic




1)

2)
3)
4)

5)

Poincaré’s Theorem (with boundary vertices)

Let D be a convex hyperbolic polygon with finitely many sides,
possibly with boundary vertices but without free edges.

Suppose:

All vertices lie inside H and that D is equipped with a collection g of side-pairing
Mobius transformations.

No side of D is paired with itself.
The elliptic cycles are &i,...,&. and the parabolic cycles are Py, ..., Ps.
Each elliptic cycle &; satisfies the elliptic cycle condition

Each parabolic cycle P; satisfies the parabolic cycle condition.




Poincaré’s Theorem (with boundary vertices)

Then:
1) The subgroupT = (G) generated by G is a Fuchsian group.

2) The Fuchsian group I"has D as a fundamental domain.

3) The Fuchsian group I"can be written in terms of generators and relations as follows.
Think of Gas an abstract set of symbols.
For each elliptic cycle ;, choose a corresponding elliptic cycle transformation
Y = Yv,s (for some vertex v on the elliptic cycle)
This is a word in symbols chosen from Gug—! .
Then Tis isomorphic to the group with generators~s € G and relations cycle;” :

F={(peg | =n?==5"=e¢).




Example: PSL(2,7Z)

let A = (—1+4iv3)/2 and B = (1 +iv/3)/2.

The side pairing transformations are given by:
71(2) =241 and y(z) = —1/=.

Notice that 72(A) = B and 7,(B) = A.

Poincaré’s Theorem (with boundary vertices)

53
/(/\
Y2
< :3
A B

Side pairing transformations for the modular group




Poincaré’s Theorem (with boundary vertices)

Example - continue

The side [A, B]is paired with itself by 7.
We introduce an extra vertex ¢ = ; at the mid-point of[A, B
RI1 T
(2)3(2)(2) SI

S3 S4 S3

E =C % c >

Hence we have an elliptic cy v E1 which has \w/
elliptic cycle transformation . ' |

2/C = 2. 4 b
The angle sum of this elliptic cycle satisfies
mga
Hence the elliptic cycle condition holds with m1 = 2.




Poincaré’s Theorem (with boundary vertices)

Example - continue
(&) = (2)=(2)
S1 S92 S4

Hence A — B is an elliptic cycle & which has 5 | 52
elliptic cycle transformation v '71(z) = (—z—1)/.

83 S4

The angle sum of this elliptic cycle satisfies ~
3(LA+ £B) = 3(w/3 + m/3) = 2.

Hence the elliptic cycle condition holds with m = 3.




Example - continue

Hence we have a parabolic cycle oo
with parabolic cycle transformation v;(2) =z + 1.
As 71 has a single fixed point at 0o, it is parabolic.

gé!

Poincaré’s Theorem (with boundary vertices)

Hence the parabolic cycle condition holds. .

By Poincaré’s Theorem, 53

Let.a = 71, b = .
Then the group generated by 7y1, ¥2in terms of generators
and relations is as follows:

PSL(2,7Z) = (a,b | (b™ a)® = b* =e).

the group generated by 7y1 and 72 is a Fuchsian group. ~

84

A
S
| 52




1)
2)
3)
4)

Summary

Poincaré’s Theorem (no boundary vertices)
Free Edge

Parabolic Cycle

Poincaré’s Theorem (with boundary vertices)
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