Content

Tutorial 8 ---Chan Ki Fung

BACK

Questions of today

1. (ch.3 of textbook)Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the extended complex plane. The topology of $\hat{\mathbb{C}}$ is defined as the one point compactification of \mathbb{C} , or as the topology of S^2 using stereographic projection(textbook p.88-89). In particular, $\hat{\mathbb{C}}$ is compact. Let U be an open subset of $\hat{\mathbb{C}}$ containing ∞ . We say a function $f: U \to \mathbb{C}$ is holomorphic at ∞ if the function g defined by

$$g(z)=egin{cases} f(\infty),z=0\ f(1/z),z
eq 0 \end{cases}$$

is holomorphic at 0. On the other hand, let $z \in U$ and $f: U \to \hat{\mathbb{C}}$ be a function with $f(z) = \infty$, then we say f is holomorphic at z if and only if the function 1/f is holomorphic at z. Show that

- a. An entire function f extended to a holomorphic function on $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ if and only if f is a polynomial.
- b. Show that any holomorphic map from $\hat{\mathbb{C}}$ to itself is a rational function. (Unless *f* is the constant function with value ∞ .)
- c. Show that any biholomorphism from $\hat{\mathbb{C}}$ to itself is a fractional linear transformation.
- d. Show that any non constant holomorphic map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ has a zero. Deduce from this the fundamental theorem of algebra.
- 2. Explain why each of the following open subsets of $\mathbb C$ are not conformally equivalent to the open unit disc $\mathbb D$.
 - a. $\mathbb{D} \cup \{2\}$
 - b. $\mathbb{D}\setminus\{0\}$
 - c. \mathbb{C}
- 3. There is a map from the set of $\mathrm{SL}(2,\mathbb{C})$ to the set of all fractional linear transformation. Given by

$$A = egin{pmatrix} a & b \ c & d \end{pmatrix} \mapsto (f_A: z \mapsto rac{az+b}{cz+d}).$$

Show that this map is a group homomorphism, with kernel = $\{\pm I\}$.

- 4. a. Find a conformal mapping from the portion of the unit disc in the first quadrat : $\{x+iy\in\mathbb{D}:x,y>0\}$ to the upper half plane \mathbb{H} .
 - b. Find a conformal mapping from $\mathbb{C} \setminus [0,1]$ to $\mathbb{D} \setminus \{0\}.$
- 5. a. Show that a conformal mapping from the punctured plane $\mathbb{C}\setminus\{0\}$ to itself must be of the form

$$z\mapsto az^{\pm 1}$$

- b. Show that the punctured plane $\mathbb{C} \setminus \{0\}$ and the punctured disc $\mathbb{D} \setminus \{0\}$ are not conformally equivalent.
- c. Show that $\mathbb{C}\setminus\{0,1,2\}$ and $\mathbb{C}\setminus\{0,1,3\}$ are not conformally equivalent.

Hints & solutions of today

- 1. a. Consider the function g(z) = 1/f(1/z), f has no essential singularity at ∞ if and only if g has no essential singularity at 0.
 - b. Consider f as a meromorphic function on $\hat{\mathbb{C}}$. Using the compactness of $\hat{\mathbb{C}}$ to show that f has finitely many poles.
 - c. Using b. and count the preimage of 0.
 - d. f is open by open mapping theorem, and f is closed since the domain is compact.
- 2. a. Not connected
 - b. Not simply connected / the function 1/z has nonzero integration over a small circle centered at 0
 - c. There is no bounded nonconstant holomorphic functions on \mathbb{C} .

3. Skip

- 4. a. Map the set into $\{z \in \mathbb{H}: 0 < rg(z) < \pi/2\}$ first.
 - b. Apply the transform $z\mapsto 1/z$ first.
- 5. a. Either f or 1/f should have a removable singularity at 0, otherwise f has an essential singularity at 0, and so f is not injective by Carsoti Weierstrass.

Replcaing f by 1/f if necessary, we can assume f is extendable to \mathbb{C} . By the same argument, the function g(z) can not have essential singularity at 0, it can neither be a removable singularity, because f is not bounded. As a result, f has a pole at the infinity. The argument in 1a shows that f is a polynomial.

Finally, f' non zero implies f is of degree ≤ 1 . i,e. f(z) = az + b. f is nonconstant implies $a \neq 0$. $f(z) \neq 0$ for $z \neq 0$ implies b = 0.

- b. f should have a removable singularity at 0.
- c. Show that f extends to a biholomorphic map from $\hat{\mathbb{C}}$ to itself. Hence f must be a fractional linear transform.

