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4 Conformal Mappings onto Polygons

Explicit formulaof conformal mapping from 1H to polygons

4.1 Some examples

Egl Recall fate is a conformalmap from
1H to the sector 2 Oc arg 2 cat 0Cds 2

Eg2 of section1 page 210 on theTextbook
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Boundary mapping as in the figure
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Clearly integrable as the exponent is k
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4.2 The Schwarz Christoffel Integral

Def Schwarz Christoffel Integral
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