Prop35	Ut-12C	be argian, x
•1fn, y , f be <u>color</u> functions on 52 such that		
• $f_n \Rightarrow f$ <i>uniformly</i> on every compact subset of 52		
If f_n are <u>imjective</u> , then		
f is a <u>either</u> <u>imjective</u> or <u>constant</u> .		

$2\frac{1}{3}$: Suppose that $\frac{1}{3}$ is not injective.
Then $\frac{1}{3}z_{1},z_{2}\in\Omega$ such that $z_{1}z_{2}$ but $f(z)-f(z_{2})$.
$2\left(\frac{1}{100}\right)^{1/2} = \frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = \frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = \frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = 0$
$\frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = 0$
$\frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = 0$
$\frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = \frac{1}{3}\left(\frac{1}{100}\right)^{1/2} = \frac{1}{3}\left(\frac{1}{100}\right)^{$

$$
\Rightarrow \qquad = \frac{1}{2\pi i} \int \frac{q(\xi)}{q(\xi)} d\xi
$$
\n
$$
= \frac{1}{2\pi i} \int \frac{q(\xi)}{q(\xi)} d\xi
$$
\n
$$
= \frac{1}{2\pi i} \int \frac{q(\xi)}{q(\xi)} d\xi
$$
\n
$$
= \frac{1}{2\pi i} \int \frac{q(\xi)}{q(\xi)} d\xi
$$
\n
$$
= \frac{1}{2\pi i} \int \frac{q(\xi)}{q(\xi)} d\xi
$$

using a switch (1701)
$$
15-51-6
$$
 normal 25
st. $9(5) \pm 0$, \forall $|5-5z| \le \epsilon$.
Thus $\frac{1}{9a} \Rightarrow \frac{1}{9}$ uniformly m $|5-5z| = \epsilon$

and the rule
$$
\frac{1}{2\pi i} \int_{|S-z_2|=\epsilon} \frac{q_n(s)}{q_1(s)} ds \Rightarrow \frac{1}{2\pi i} \int_{|S-z_2|=\epsilon} \frac{q(s)}{q(s)} ds
$$

\nThe equation
$$
|S-z_2| = \epsilon
$$

\nThe equation
$$
|S-z_2| = \epsilon
$$

\nThe equation
$$
|S-z_2| \leq \epsilon
$$

\nThe equation $$

Remark: The congunent in the proof of Prop3.5 gives the following

Hurwitz them:
\nIf
$$
f_n
$$
 a f analytic in Ω , $f_n(z)=0$, $\forall z \in \Omega$, and
\n f_n involves multiplying to f on every compact set of Ω ,
\nthen either Ω ; $f(z)=0$, or
\n Ω ; $f(z)=0$, Ω .

And clearly Hurwitz Thm \Rightarrow Prop 3.5.

3.3 Proofof the Riemann Mapping Theorem

Step 1	Fn	a	proper	aud	Süply- <u>cmnot</u> led	region	Ω ,
awd	$z_0 \in \Omega$,	\exists	$cmfammal$	$\xi(z_0) = 0$	λ	$\frac{f'(z_0) > 0}{2}$	

\n
$$
\begin{array}{rcl}\n\text{B:} & \text{I.} & \text{I.} & \text{I.} & \text{I.} & \text{I.} \\
\text{I.} & \text{I.} & \text{I.} & \text{I.} \\
\text{II.} & \text{I.
$$

Then
$$
f(z) = \frac{1}{g(z) - (g(w) + z\pi i)}
$$
 is the *div*

and
$$
|\hat{f}_{\lambda}(z)| = \frac{r}{|g(z)-(g(w)+2\pi i)|} < \frac{r}{r} = 1
$$

$$
\therefore f_{1}: \Omega \to f_{1}(x) \subset D \quad \text{curfull}
$$
\n
$$
\text{Fuially, } f(z) = e^{i\Theta} \frac{f(z_{0}) - f(z)}{1 - f(z_{0})} \frac{f(z)}{f(z)} = e^{i\Theta} \Psi_{f(z_{0})} \theta(z)
$$

(where $\forall x$ as in subsection z_1 a $\theta \in \mathbb{R}$ to be chosen) is holo. injective, $f(x) \subset D$, and $f(z_0) = 0$.

Furthermore,
$$
f(z_0) = e^{j\theta} \Psi_{\theta(z_0)}(t(z_0)) \theta'(z_0)
$$
.
\nHence, z_0 $\theta = - \arg (\Psi_{\theta(z_0)}(t(z_0)) \theta'(z_0))$,
\n $f(z_0) > 0$, \gg

Step 2: The proof can be reduced to the case that
\n
$$
\begin{array}{rcl}\n\text{Step 2:} & \text{The proof can be reduced to the case that} \\
\hline\n& 12 & \text{in a simply-connected region in } D \text{ with} \\
& & z_0 = 0 \in \Omega.\n\end{array}
$$

$$
\begin{array}{ll}\n\begin{array}{ll}\n\text{If} & \text{If} & \text{Riemann Mapping} & \text{Thus, } 4000 \text{ in } \text{He} \text{ case, } \omega \text{ in } \text{Step 2,} \\
\text{then} & \text{If} & \text{Cay} & \text{and} \\
\end{array} & \begin{array}{ll}\n\text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\
\end{array} & \begin{array}{ll}\n\text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\
\end{array} & \begin{array}{ll}\n\text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} & \text{If} \\
\end{array} & \begin{array}{ll}\n\text{If} & \text{If} \\
\end{array} & \begin{array}{ll}\n\text{If} & \text{If} & \text{
$$

Step3: For simply-connected region $\Omega \subset D$ containing 0,
$\exists F \in \mathcal{F} = \{f: \Omega \Rightarrow D : \text{Aolo}, \text{divijection } \mathcal{A} \text{ (0)=0}\}$
$\text{S.t. } F(o) = \text{sup } f(o) $

$$
H: Cloudy f: D^{CD} \rightarrow D = z \mapsto z \in F
$$
\n
$$
\therefore F \neq \emptyset.
$$
\n
$$
\therefore F \neq \emptyset
$$
\n
$$
S = \sup_{f \in F} |f'(o)| < \infty \quad \text{(side } f \in F \Rightarrow |f| \in I)
$$
\n
$$
\Rightarrow f \neq F \text{ such that}
$$
\n
$$
(f_0'(o)) \rightarrow s \quad \text{as } n \rightarrow \infty.
$$
\n
$$
By \text{ Monbils} \text{ Theorem (Thm33)}, \Rightarrow B \text{ is natural.}
$$
\n
$$
(a \in F \text{ a unifault} \text{ bounded})
$$
\n
$$
\Rightarrow \exists \text{ subsets } (let \text{ call } \text{ it } f \text{ in again})
$$
\n
$$
\text{Converges uniformly in every compact subset } t \text{ to } \text{ a } \text{ theorems } s \text{ such that}
$$
\n
$$
\text{And} \quad f(o) = o \quad \text{and} \quad |f_0'(o)| = s
$$
\n
$$
\text{And} \quad f(o) = o \quad \text{and} \quad |f_0'(o)| = s
$$
\n
$$
\text{And} \quad f(o) = s \quad \text{and} \quad f_0'(o) = s
$$
\n
$$
\text{And} \quad f \neq \text{ in the form } s \text{ such that}
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text{Hence } F \text{ as } s \Rightarrow
$$
\n
$$
\text
$$