$P = \text{Aut}(D) \implies \text{Aut}(H)$ is a group isomaphism

 \mathbb{H} : We've seen that ∇ is bijection, it remains to check that T $\bar{\omega}$ a group homomorphism: $\forall \varphi_1, \varphi_2 \in A \omega t(\mathbb{D})$, $\nabla (\phi \circ \phi_z) = F \circ (\phi \circ \phi_z) \circ F$ $\varphi^{\circ}\varphi^{\circ}$ of $\varphi\in\mathcal{F}_{\sigma}$ $\begin{array}{lcl} \times & \left(\mathcal{S}^{\text{(1)}} \right)^{\circ} \left(\mathcal{S}^{\text{(2)}} \right) & = \\ \times & \times \end{array}$

Remark: This fact can be generalized to any conformally equivalent opensets U and V

Explicit description of Aut (IH)

$$
\begin{array}{ccc}\n\times & \text{Im } 24: & \text{S} \in \text{Aut} \left(|t| \right) & \Leftrightarrow \\
 & \text{S} \left(z \right) = \frac{az + b}{cz + d} & \text{Im } ac \text{ as } a, b, c, d \in \mathbb{R} \\
 & a, a d - b c = 1. & (20.54f)\n\end{array}
$$

Remarks: \dot{u} , a , b , c , $d \in \mathbb{R}$, not just $\mathbb C$

 C_i i's any $f \in$ Ant CH) is a fractional linear transformation (iii) any f E Aut CID is a fractional linear transfunction

$Pf_{\theta}f_{\theta}f_{\theta}$	2.9
(f_{θ})	$ad_{-\theta}c = 1 \Rightarrow (a,b)$, (c,d) and $linearly$ independent
$(a, particular, c, d, cam't be 0 simultaneously)$	
$\therefore f(z) = \frac{az+b}{cz+d}$ is well-defined (and nm-constant)	

C,
$$
d \in \mathbb{R} \Rightarrow f
$$
 is the end in \mathbb{H} .
\nNow $f(x+y) = \frac{a(x+y)+b}{c(x+y)+d} = \frac{(ax+b)+2ay}{(cxd)+2ey}$
\n
$$
= \frac{[(ax+b)+iay][(cxd)-iy]}{(cxd+3)+c^2y^2}
$$
\n
$$
\Rightarrow \lim_{t \to \infty} f(\overline{z}) = \frac{ay(cxd)-cy(ax+b)}{(cxd+3)^2+c^2y^2} = \frac{(ad-bc)y}{|c+d|^2}
$$
\n
$$
= \frac{y}{|c+d|^2} \Rightarrow 0 \quad \forall y > 0
$$
\n
$$
\therefore f: \mathbb{H} \Rightarrow \mathbb{H}.
$$
\nObserve that $g(\overline{z}) = \frac{d\overline{z}-b}{-c\overline{z}+a}$ that the same form
\nwith coefficients satisfying $d \cdot a - (-b)(-c) = 1$.
\n
$$
\therefore g \text{ is well-defined, } 4060 \text{ in } \mathbb{H} \text{ and }
$$
\n
$$
g: \mathbb{H} \Rightarrow \mathbb{H}.
$$
\n
$$
\Rightarrow \text{faright } f
$$
\n
$$
\Rightarrow \text{aright } f
$$
\n
$$
\Rightarrow \text{faright } f
$$
\n
$$
\Rightarrow \text{haright } f
$$

$$
=\frac{(ad-bc)z}{(ad-bc)}=z
$$

$$
Su\hat{i}ilarly
$$
 $90f(z) = z$,
\n $\therefore g = 5^{-1}$ and 16000 $5 \in$ Add(H).

 (\Rightarrow) If $\frac{1}{2} \in Aut(H)$, then $\beta = \frac{dunit}{2}$ (i) $\in H$.

If
$$
\beta = u + i\theta
$$
, $u, \theta \in \mathbb{R}$, $\theta > 0$.
\nThen $4(z) = \frac{z - u}{u} = \frac{\frac{1}{4}z + (-\frac{u}{4z})}{0 \cdot z + \sqrt{u}} \in Aut(\mathbb{H})$
\n ω $\frac{1}{4\theta} \cdot \sqrt{u} - (-\frac{u}{4\theta}) \cdot 0 = 1$.
\nAnd $4(\beta) = \frac{(u + i\theta) - u}{\theta} = i$ and $4^{-i}(i) = \beta$
\n ω and $\frac{1}{4\theta} \cdot \sqrt{u} - (-\frac{u}{4\theta}) \cdot 0 = 1$.
\n ω and $\frac{1}{4\theta} \cdot \sqrt{u} - (-\frac{u}{4\theta}) \cdot 0 = 1$.
\n ω and $\frac{1}{4\theta} \cdot \sqrt{u} - (-\frac{u}{4\theta}) \cdot 0 = 1$.
\n ω and $\frac{1}{4\theta} \cdot \sqrt{u} - (-\frac{u}{4\theta}) \cdot 0 = 1$.
\n ω and ω and

$$
= \frac{e^{i\theta} + e^{-i\theta} \cdot z - i(e^{i\theta} - e^{-i\theta})}{-(e^{i\theta} - e^{-i\theta})z + i(e^{i\theta} + e^{-i\theta})}
$$

\n
$$
\Rightarrow \frac{1}{2} \int e^{i\theta} (z) dz = \frac{(2\theta + z + 2\theta) \cdot z + i(e^{i\theta} + e^{-i\theta})}{-(2\theta + z + 2\theta)}
$$

 \Rightarrow

$$
f(z) = \frac{(\omega \theta \cdot (\frac{z-y}{v}) + \Delta \tilde{u} \cdot \theta)}{-\Delta \tilde{u} \theta \cdot (\frac{z-y}{v}) + (\omega \theta)}
$$

$$
= \frac{\frac{(\omega \theta}{v} \cdot z + \frac{(-11 \omega \theta + 0 \lambda \tilde{u} \cdot \theta)}{\sqrt{v}}}{-\frac{\Delta \tilde{u} \theta}{\sqrt{v}} \cdot z + \frac{(11 \omega \theta + 0 \omega \theta)}{\sqrt{v}}}
$$

Cleany coefficients are real and $\frac{C\omega\theta}{\sqrt{I_{F}}}(\underbrace{U\theta\theta+\theta+\theta\theta}_{\sqrt{I_{F}}}) - (-\underbrace{A\ddot{u}\theta}_{\sqrt{I_{F}}})(-\underbrace{U\theta\theta+\theta\ddot{u}\theta}_{\sqrt{I_{F}}})$ $1 = \theta^2 + \theta^3 + \theta^2 = 1$

.. \frown is of the required form. S

Remark: The proof in the Textbook was the following relationship between fractional linear transfumations and zx2 matrixes. $f_{M}(z) = \frac{Qz+b}{cz+d} \iff M = \begin{pmatrix} \alpha & b \\ c & d \end{pmatrix}$

Note that

\n
$$
\begin{array}{ll}\n\text{Note that} & \text{if } \mathcal{L} = \text{Id} \\
\text{if } \mathcal{L} = \mathcal{L} \\
\text{if } \mathcal{L} = \mathcal
$$

(iii) By (i) a (ii),
$$
(5\overline{n})^t
$$
 exist $(5\overline{n})^t = 5(\overline{n}^t)$

\n(iv However, $5c-m = 5m$. (In fact $5(m)^t = 5m$, $\forall k \in \mathbb{C}\backslash\{0\}$)

\nFor the purpose of proving π in $2\overline{4}$, the Textbook considered $SL_2(\mathbb{R}) = \{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a, b, c, d \in \mathbb{R} \}$ with $ad-bc=1$

\n(real) Special linear group (of degree 2)

and Thurz.4 can be written as

$$
Aut(\mathbb{H}) \overset{\text{group}}{\underset{i \text{so}}{=}} SL_{2}(\mathbb{R}) \underset{\pm \mathbf{I}}{=} \frac{def}{\underline{def}} PSL_{2}(\mathbb{R}) \left(\begin{array}{c} \text{(\text{real}) projection} \\ \text{special Linear group} \\ \text{(\textit{of degree 2})}\end{array}\right)
$$

53 The Riemann Mapping Thenem

3.1 Necessary Conditions and Statement of the Theorem

The Problem: determine conditions on an (nonempty) open set
\n
$$
\begin{array}{rcl}\n\text{11.} & \text{12.} & \text{13.} & \text{14.} & \text{15.} \\
\text{22.} & \text{24.} & \text{24.} & \text{24.} & \text{24.} \\
\text{33.} & \text{34.} & \text{34.} & \text{24.} & \text{24.} \\
\text{44.} & \text{45.} & \text{46.} & \text{47.} & \text{24.} \\
\text{55.} & \text{56.} & \text{57.} & \text{58.} & \text{29.} \\
\text{66.} & \text{67.} & \text{68.} & \text{20.} & \text{21.} \\
\text{77.} & \text{78.} & \text{79.} & \text{79.} & \text{20.} \\
\text{88.} & \text{99.} & \text{10.} & \text{11.} & \text{12.} & \text{13.} \\
\text{90.} & \text{10.} & \text{11.} & \text{12.} & \text{13.} & \text{14.} \\
\text{11.} & \text{12.} & \text{13.} & \text{14.} & \text{15.} & \text{16.} \\
\text{13.} & \text{14.} & \text{15.} & \text{16.} & \text{17.} & \text{18.} \\
\text{14.} & \text{15.} & \text{16.} & \text{17.} & \text{19.} & \text{19.} \\
\text{15.} & \text{16.} & \text{17.} & \text{19.} & \text{19.} & \text{10.} \\
\text{17.} & \text{19.} & \text{19.} & \text{19.} & \text{10.} & \text{10.} \\
\text{19.} & \text{19.} & \text{19.} & \text{10.} & \text{11.} & \text{11.} \\
\text{10.} & \text{10.} & \text{10.} & \text{11.} & \text{11.} & \text{12.} & \text{13.} \\
\text{11.} & \
$$

(Then for 52 satisfying these conditions, Dirichlet problem in R is solvable.)

Necessary conditions 41 If $F: \mathbb{R} \rightarrow \mathbb{D}$ conformal, then $\sup_{z\in\Omega} |f(z)| = 1$ $f \in U$ Therefore $\Omega \neq \mathbb{C}$, otherwise Liouville's Thur \Rightarrow $F(z)$ = cmst. which cannot be conformal. For convenience, let we call a non-empty set Ω proper if $\Omega \neq \mathbb{C}$. (2) If $F: \Omega \geq D$ conformal, then $F: \Omega \geq D$ is a From and thence Ω and $\mathbb D$ are topological equivalent. In particular, ^r must be simply connected region \mathcal{L} open and connected in C

Thm3.	(Riemann Mapping Then)						
Suppne	regian	2	is	proper and	slüply-convoted.		
Then	\forall	z o G JZ	\exists	cu	unigulo	confanual	map
$F = IZ \Rightarrow ID$	such that	$F(z_0) = O$	and	$F(z_0) > O$			
This means	$F(z_0) > O$						
and	$F(z_0) > O$						

Cor3.2 Any two proper simplyconnected regions in ^Q are confamally equivalent

Remark: Hence singly connected regions in C fall into only 2 conformal equivalent classes $\subset \mathbb{C}$ or D

Proof of uniqueness of	Thm 3.1			
Suppca	Heat	$F = JZ \rightarrow D$	$G: S2 \rightarrow D$	are conformal
3.4	3.1			
4.4	$F = JZ \rightarrow D$	$G: S2 \rightarrow D$	are conformal	
5.4	3.1			
6.4	3.1			
7.4	3.1			
8.4	3.1			
9.4	3.1			
10.4	3.1			
11.4	3.1			
12.4	4.1			
13.4	4.1			
14.4	4.1			
15.4	4.1			
16.4	4.1			
17.4	4.1			
18.4	4.1			
19.4	4.1			
10.4	4.1			
11.4	4.1			
12.4	4.1			
13.4	4.1			
14.4	4.1			
15.4	4.1			
16.4	4.1			
17.4	4.			

Then $H:D\Rightarrow D$ conformal, and $H(0)=F\circ G^1(0)=F(7e)=0$ $H \in Aut(D)$. $\mathcal{L}_{\text{max}}^{(k)}$ By Schwarz Lemma (more preciely Cor 2.3), $H(z) = e^{i\theta}z$ for some $\theta \in \mathbb{R}$, \Rightarrow $e^{i\theta} = H'(0) = F'(G'(0)) \frac{1}{G'(G'(0))} = \frac{F(\pi)}{G'(G_0)} \frac{1}{\pi}$ real and praitice \therefore $e^{i\theta} = 1$ And thence $F \circ G^{1}(\mathbb{Z}) = Z \Leftrightarrow F \equiv G \cdot x$

Existense part is much harder and will be fandled in the next two subsections.

3.2 Montel's Thenem

Def: let
$$
IL \subset C
$$
 be open. A family \cong of the following this function
on IL is said to be monon
if every sequence in \cong has a subsequence that
Comvarges uniformly on every compact subset of IL

(I is called precompact if one can make the conveyence as a convergence of a metric (52, d). See MATH3060.)

Left:	Let $JC \subset C$ be open. A family J of declomaptive functions on J is said to be
(1) <u>uniformly bounded an compact subsets</u> of J .	
J H compact set $K \subset D$, J $B > 0$ such that $J(x) \leq B$, $H \neq K$ and $J \in J$.	
(2) <u>equivaluous</u> on a compact set K if J $H \in S$ 0 such that when even $z, w \in K$ with $(z-w) < \delta$,	
then $ f(z) - f(w) < \epsilon$, $H \neq \xi J$.	

(Ex: review MATH3060 on the related properties)

In midric spale setting of family of continuous functions
the properties (1) and (2) are independent. However,
So *Sawüly of Aolowaplic* functions, (1)
$$
\Rightarrow
$$
 (2), thanks
to the Cauchy Integral Formula:

Thm 33 Suppose F is a family of Holomophic functions on
$$
\Omega
$$

\nthat is uniformly bounded on compact subsets of Ω .

\nThen

\n(i) 5 is equicontinuous on every compact subset of Ω .

\n(ii) 5 is a normal family.

To prove
\n
\nIsmma 3.4 Any open set
$$
\Omega
$$
 (\subset) has a compact exhaustion

Recall

A compact exhaustion (surple called exhaustian in the Textbook)
of
$$
\Omega
$$
 is a sequence $1K_2\int_{\ell=1}^{\infty}$ of compact subsets of Ω
such that
(i) $K_{\ell} \subset \inf(K_{\ell+1})$ \forall $l=1,2,3,...$
(ii) $K_{\ell} \subset \inf(K_{\ell+1})$ \forall $l=1,2,3,...$
(iii) $K \subset K_{\ell}$.
For particular, $\Omega = \bigcup_{k=1}^{\infty} K_{\ell}$.

$$
\frac{f\{f\}of lemma 34:}{f\{f\}of Lemma 34:}
$$
\n
$$
\frac{f\{f\}of Lemma 34:}{f\{f\}or
$$
\n
$$
\frac{f\{f\}of 1
$$
\n<

$$
\frac{Pf_0 f(i) (of Thm 33)}{let \{f_n\}_{n=1}^{\infty} \subset F \text{ be a sequence.}
$$
\n
$$
\text{Let } K \subset \Omega \text{ be compact.}
$$

\nThen by (i), 15n5n=1 & multiply bounded and
\nagui.continuous on K.
\nArseola-Asoli Thomas (on the notation) (review MattHzobo)
\n
$$
\Rightarrow
$$
 3 Subsequence of 15n5 converges uniformly on K.
\nLet K_{λ} $S_{\lambda=1}$ be a compact explanation of 52.
\nThen 15n5 has a convergent subsequence $\{g_{\eta,1}\}$ on K_1
\n(in unique metric)
\nApply G_{λ} that sound argument subset of (in uniform metric)
\nAnd so on, we have subset of $\{g_{\eta,2}\}$ on $K_2 \geq K_1$
\n(in uniform metric)
\nAnd so on, we have subceg. 19n25 on $K_2 \geq K_1$
\n(in uniform metric)
\nFind (i) 19n25 converges uniformly on $K_2 \geq \cdots \geq K_1$
\n(ii) 19n25 converges uniformly on $K_2 \geq \cdots \geq K_1$
\n(iii) 19n25 converges uniformly on $K_1 \geq \cdots \geq K_1$
\nThat the $S_{\lambda} = \{g_{\eta,1}, g_{\eta,2}\}$ is a subsequence of $\{f_{\eta,2}\}$
\nThat converges uniformly on $K_{\lambda} \geq K_{\lambda}$ and $K_{\lambda} \geq K_{\lambda}$
\nSince $\{K_{\lambda}\}$ is a compact explanation of 12,
\nSaws curves using G_{λ} and G_{λ} is a complex number of K_{λ} is a complex number of K_{λ} .\n

as K c K l fa sume l). This proves $\frac{1}{l}$ is normal.