Ch& Conformal Mappings

\$1 Conformal Equivalence and Examples

Def · A bijective holomophic function
$$f: U \rightarrow V$$
 (U, V open mC)
is called a conformal map or biholomophism.

$$\frac{\text{Remarks}}{\text{V & V are conformally equivalent}}$$

$$\implies \exists \text{ toolo. } f: V \Rightarrow V \text{ and } g: V \Rightarrow V \text{ s.t.}$$

$$g(f(z)) = z \quad \forall z \in V \text{ e}$$

$$f(g(w)) = W \quad \forall w \in V.$$

Some authors call a holomophic map f: U→V conformal
 if f(z)=0, ∀z∈U, not necessary bijective (globally)
 (In this course, we'll follow Textbook's convention.)

$$\frac{4 \text{ of } Prop |.1}{Suppose on the contrary that $f(z_0)=0$ for some $z_0 \in U$.
Then $f(z_0) - f(z_0) = Q(z_0) + G(z_0)$ near z_0
where $Q \neq 0$, $k \geq 2$ and
 G_1 vanishing to refer $k \neq 1$ at z_0 .
 $\left(i_{k}, \frac{|G(z_0)|}{|z_0|^{k+1}} \leq C - near z_0\right)$
 $i_{k} = \frac{1}{2} \sum_{j=1}^{N} \sum$$$

Consider w=0 with IWI sufficiently small Then

$$f(z) - (f(z_0) + w) = \left[\alpha (z - z_0)^k - w \right] + G(z)$$
$$= F(z) + G(z)$$

where $F(z) = \alpha(z-z_0)^k - w$.

Then |F(z)| > |G(z)| on a sufficiently small circle centered at z_0 • $k \ge z \Rightarrow F(z)$ has at least \ge zeros inside that circle.

Rouchés Thue \Rightarrow f(z) - (f(z)+w) has at least z zeros there two. Since f' is thole a hence zo is an isolated zero. We may assume, by choosing a smaller circle, that

$$f'(z) \neq 0$$
 $\forall z$ insides the circle except $z = z_0$.
 \Rightarrow the zeros of $f(z) - (f(z_0) + w)$ are distinct
 \therefore $f \otimes$ not injective near z_0 .
This proves the 1st statement.

For the 2nd statement, let $q = f^{-1} = f(U) \rightarrow U$ (Open mapping theorem (Thm 4.4, ch3) => I is contained) Suppose that wo ef(U) and w close to wo, but w + wo Then IZ& ZOEU S.t. W=f(Z) + Wo=f(ZO). Hence $\frac{g(w) - g(w_0)}{w - w_0} = \frac{1}{\left(\frac{f(z) - f(z_0)}{z - z_0}\right)}$ Since flass = 0, we have $\lim_{W \to W_0} \frac{g(w) - g(w_0)}{W - W_0} = \frac{1}{\lim_{Z \to Z_0} \left(\frac{f(z) - f(z_0)}{Z - z_0}\right)} = \frac{1}{f(z_0)}$ exists \therefore g is tholo. and $g'(w_0) = \frac{1}{f'(g(w_0))} \times$

Remark: If
$$f: U \rightarrow C$$
, $z_0 \in U$, and $f'(z_0) \neq 0$.
Then f preserves angles at z_0 .

The precise formulation is:
Let
$$\gamma = \eta$$
 be two (smooth oriented) curves intersecting
at z_0 , then the angle from the curve $f_0 \gamma$
to the curve $f_0 \eta$ at $f(z_0)$ equals the angle
from the curve γ to the curve η at z_0 .
 $\gamma = 0$ $\gamma = 1$ $f_0 \gamma$ $f_0 \gamma$
 $\gamma = 0$ $\gamma = 1$ $f_0 \gamma$
 $\gamma = 0$ γ $f_0 \gamma$
 $\gamma = 0$ γ $f_0 \gamma$
 γ $f_0 \eta$
(Problem 2 on page 255 of the Textbook.)
Hence
conformal maps preserve angles

$$\frac{Thm 1.2}{L}: \text{ the map } F: H \to D$$

$$\stackrel{\cup}{z} \stackrel{\cup}{\mapsto} \stackrel{\neg}{\frac{1-z}{1+z}} \quad \text{is a conformal map}$$
with inverse $G = F^{-1} = D \to H^{-1}$

$$\stackrel{\cup}{w} \stackrel{\cup}{\mapsto} \stackrel{\cup}{s} \frac{I-w}{H^{-1}}$$

$$\begin{split} & \underset{W \in D \Rightarrow}{\text{H}} | z \in \text{H} \Rightarrow i + z \neq 0 \Rightarrow F \text{ is holo.} \\ & \underset{W \in D \Rightarrow}{\text{H}} \text{H} \neq 0 \Rightarrow G \text{ is holo} \\ & \underset{W \in D \Rightarrow}{\text{H}} \text{H} \neq 0 \Rightarrow G \text{ is holo} \\ & \underset{W \in D \Rightarrow}{\text{H}} \text{H} \neq 0 \Rightarrow G \text{ is holo} \\ & \underset{W \in D \Rightarrow}{\text{H}} \text{H} = \left| \frac{i - \overline{z}}{i + \overline{z}} \right| < 1 \\ & \Rightarrow F(iH) < D \\ & = \frac{i - u^{-i} U}{i + u + i U} \in D \\ & \underset{W \in G(W)}{\text{Im}} = \operatorname{Im} \left(i \frac{1 - u - i U}{i + u + i U} \right) \\ & = \frac{i - u^{2} - U^{2}}{(1 + u)^{2} + U^{2}} > 0 \\ & \therefore \quad G(D) < H \\ & \underset{i + i i \frac{i - w}{i + w}}{\text{H}} = w \end{split}$$

$$A \quad G(F(z)) = \lambda \cdot \frac{1 - \frac{\lambda - z}{\lambda + z}}{1 + \frac{\lambda - z}{\lambda + z}} = z$$

 $\frac{\text{Romands}:}{(i) \text{ ad} - bc \neq 0} \iff cz + d \neq k(az + b) \text{ oud } (az + b) \neq k(cz + d)$ $(Sa \text{ some } k \in G)$ $\iff z \mapsto \frac{az + b}{cz + d} \text{ is not a constant map}.$

(ii) Some other authors call them <u>linear fractional</u> <u>transformations</u>, or <u>Möbius transformations</u>. 1.2 Further examples

Note that translations and dilations are special cases of fractional linear transformations: $\frac{\text{translations}}{Z \mid -7 \ Z + \ h} = \frac{Z + \ h}{0.7 + 1} \quad \text{i.e.} \quad a = 1 = d, \ b = \ h, \ c = 0$

$$\frac{dilations}{dilations} \neq D \subset Z \qquad C \neq 0$$

$$= \frac{C \neq + 0}{O \cdot z + 1} \qquad \& \quad C \cdot (-0.0 = C \neq 0).$$

$$\frac{Eg l'(\text{not in textbook})}{(Complex) \underline{Inversion}} \xrightarrow{\downarrow}_{Z \mapsto} (C \land 105 \rightarrow C \land 105 \\ z \mapsto \begin{pmatrix} 0 & z = \infty \\ \infty & z = 0 \end{pmatrix}$$

is conformal.

Note that Inversion is also a fractional luiear transformation

$$Z \mapsto \frac{1}{Z} = \frac{0.Z+1}{Z+0} \leq 0.0 - 1.1 = -1 \neq 0$$
.