2.1 Proof of the asymptotics for Y, (ie. Final step of the Proof of Prime Number Thenem)

Denote
$$
F(s) = \frac{x^{st1}}{s(st1)} \left(-\frac{S(s)}{s(s)}\right)
$$
 where x fixed (2 suff. large)
Then $Rup2.3 \Rightarrow VC>0$, $Y_{1}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{i\infty} F(s)ds$

where T = 3 and 5>0 is chosen (depending on T) such that $S(s)$ +0 along the intour. $\int \hat{u}$ can be done since \leq (S) + 0 \forall Re(S) \geq | (Though I, 2) By Prop 2.7 (ii) in Chb and Prop 1.6 in Ch7, $+205275057$ $|\zeta(s)| \leq c_{\xi} |t|^{\epsilon}$ and $1/5551 \leq C_{\epsilon} |t|^{2}$ $($ \forall τ $>$ $($ \pm $|\nmid \zeta|$ $>$ $($

How
$$
U \times 0
$$
, $\exists A > 0$ set.

\n(*)

\n
$$
\left| \frac{\leq (s)}{\leq (s)} \right| \leq A|t|^{1} \quad \forall \sigma \geq 12 \text{ [t|} \geq 1
$$
\n
$$
\Rightarrow \text{For } R \text{ (>T$) sufficiently large,}
$$
\n
$$
|F(s)| = \frac{|x^{st}|}{|s(s+1)|} \left| \frac{\leq s}{s(s)} \right|
$$
\n
$$
\leq x^{c+1} \cdot \frac{1}{|s(s+1)|} \left| \frac{\leq (s)}{\leq s} \right| \leq A'|t|^{-2+1} \quad \text{for some } A' > 0
$$
\nAndly, for all s on the horizontal line segments

\n
$$
\text{[t+ik, crit]} \text{ and } \text{[t-ik, C-ik]}, C-ikJ,
$$

$$
\Rightarrow \left| \int_{c+iR}^{i+iR} F(s) ds \right| \leq A'R^{-2t\eta} (c-1) \Rightarrow 0 \text{ as } R \Rightarrow \infty
$$

and
$$
\left| \int_{i-iR}^{c-iR} F(s) ds \right| \leq A'R^{-2t\eta} (c-1) \Rightarrow 0 \text{ as } R \Rightarrow \infty
$$

letting
$$
R \gg \omega
$$
, Residue formula \Rightarrow
\n $res_{s=1}F(s) = \frac{1}{2\pi i} \int_{C-i\infty}^{C+i\infty} F(s)ds - \int_{\frac{1}{2\pi i}} \frac{1}{2\pi i} \left(\int_{i+i\tau}^{i+i\infty} + \int_{i-i\infty}^{i-i\tau} \right) F(s)ds$
\n $+ \frac{1}{2\pi i} \left(\int_{i-\delta+i\tau}^{i+\delta\tau} - \int_{i-\delta-i\tau}^{i-i\tau} \right) F(s)ds$

By Cor2.6 of Ch6,
\n
$$
56 = \frac{1}{s-1} + H(s)
$$
 near $s=1$ with the following
\n $7 - \frac{56}{5(5)} = \frac{1}{s-1} - \frac{H(s) + (s-1)H(s)}{(+(s-1)H(s))}$
\n $1 - 666$ near $s=1$
\n \therefore Yes_{s=1} F(s) = res_{s=1} $\left[\frac{x^{st}}{s(s+1)} \cdot \left(\frac{1}{s-1} - f(s) \right) \right]$
\n $= \frac{x^{2}}{2}$

$$
\therefore \quad \forall_{1}(x) = \frac{x^{2}}{2} + \frac{1}{2\pi i} \left(\int_{1+iT}^{1+i\alpha} + \int_{1-i\alpha}^{1-iT} \right) F(s) ds
$$

+
$$
\frac{1}{2\pi i} \left(\int_{1-\delta+iT}^{1+iT} - \int_{1-\delta-iT}^{1-iT} F(s) ds + \frac{1}{2\pi i} \int_{1-\delta-iT}^{1-\delta+iT} F(s) ds \right)
$$

Since we care only the livent as $x \rightarrow t\infty$, we may assume $x \geq 2$ in our estanates.

(i)
$$
\left| \int_{\frac{1}{t} \in \mathcal{S}}^{\frac{1}{t} \in S} dS \right| \leq \int_{\tau}^{\infty} \frac{|X^{2+it}|}{((\pi it)(2+it))} \left| \frac{\xi(\pi it)}{\xi(\pi it)} \right| d\pi
$$

 $\leq X^{2} \cdot \int_{\tau}^{\infty} \frac{1}{\left| \frac{1}{t} \cdot \hat{\mu} \cdot d\pi \right|} \cdot A |x|^{k} d\pi$ (take $\eta = \frac{1}{2} \bar{u}(x)$)

Clearly the integral converges and the two
\n
$$
\forall \epsilon > 0
$$
,
\n $|\frac{1}{2\pi i}|^{1+i\infty}$ F(s)ds $|\leq \epsilon \frac{x^{2}}{2}$ for suffix large T.

Sum of
$$
0
$$
 and 0 is a constant.

\n
$$
\frac{d}{dx} \int_{1-\delta x}^{1-\delta x} F(s) ds \leq \sum_{n=1}^{\infty} \frac{1}{n} \left| \frac{1}{n} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \right| \left| \frac{1}{n} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \right| \, dx
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \int_{1-\delta x}^{1+\delta x} F(s) ds \leq \frac{1}{2\pi} \int_{1-\delta}^{1} \frac{1}{n} \left| \frac{e^{i\pi x}}{1 - e^{i\pi x}} \right| \, dx \qquad (1-\frac{1}{2} \ln(x))
$$
\n
$$
\leq \frac{1}{2\pi} \int_{1-\delta}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx \qquad (1-\frac{1}{2} \ln(x))
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \left[\frac{e^{i\pi x}}{1 - e^{i\pi x}} \right]_{1-\delta}^{1} \leq C_1' \frac{1}{2\pi} \int_{1-\delta}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \left[\frac{e^{i\pi x}}{1 - e^{i\pi x}} \right]_{1-\delta}^{1} \leq C_1' \frac{1}{2\pi} \int_{1-\delta}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \frac{e^{i\pi x}}{1 - e^{i\pi x}} \, dx
$$
\n
$$
= C_1' \int_{1-\delta x}^{1} \frac{e^{i\pi x}}{1
$$

(depending on T, 5 and anne depending on T as δ is chosen arrading to T)

Heuul (i), (ii)
$$
2(\frac{u}{u}) \Rightarrow \forall \>0
$$
, \exists } δ 20, $C_{\tau} \subseteq C_{\tau}^{\prime}$ s.t.
\n $|\psi_{1}(x) - \frac{x^{2}}{2}| \leq \sum_{\tau}^{2} + C_{\tau}^{\prime} \frac{x^{2}}{\log x} + C_{\tau} x^{2-\delta}$
\n $\frac{1}{2} \text{ for sufficiently large } T$

$$
\Rightarrow \left| \frac{2\psi(x)}{x^2} - 1 \right| \leq \epsilon + 2\zeta \frac{1}{\log x} + 2\zeta \frac{1}{x^{\delta}} \longrightarrow 0 \text{ as } x \to \infty.
$$

$$
Heua \left[\frac{2\Psi(x)}{x^2} - 1\right] \le 4\epsilon \quad for sufficiently Case x.
$$

$$
\Rightarrow \qquad \lim_{x \to +\infty} \frac{2\frac{y}{x}(x)}{x^2} = 1
$$

$$
\begin{array}{lll}\n\ddots & & & \sqrt{1}(\kappa) \sim \frac{x^2}{2} & \text{as } x \to \infty\n\end{array}
$$