$$\frac{\text{Thm 7.4}}{\text{S(S)}} \begin{array}{l} \text{fas a wero maphic cartinuation into the whole (I)} \\ \text{whole only singularity is a simple pole at s=1.} \end{array}$$

$$\frac{\text{Pf: By definition of $\frac{1}{2}(S), \text{ we have}}{\frac{5(S)}{\Gamma(\frac{5}{2})}}$

$$\begin{array}{l} \text{By Thm 1.6}, \quad \frac{1}{\Gamma(\frac{5}{2})} & \text{is entries with simple zeros at} \\ & \text{s=0,-7,-4,-..} \\ & \text{=} \end{array} \\ \begin{array}{l} \text{S(S)} & \text{is meromorphic with a simple zeros at} \\ & \text{s=0,-7,-4,-..} \\ & \text{=} \end{array} \\ \begin{array}{l} \text{S(S)} & \text{is meromorphic with a simple zeros at} \\ & \text{s=0,-7,-4,-..} \\ & \text{s=0} \end{array} \\ \begin{array}{l} \text{S(S)} & \text{is meromorphic with a simple zeros at} \\ & \text{s=0,-7,-4,-..} \\ & \text{s=0} \end{array} \\ \end{array}$$$$

$$\frac{\Pr p 2.5}{\bullet} = seq. \text{ of entire function } \left\{ \delta_{n}(s) \right\}_{n=1}^{\infty} such that$$

$$\left| \delta_{n}(s) \right| \leq \frac{|s|}{n^{\operatorname{Res}+1}}, \forall s \in \mathbb{C} \text{ and}$$

$$\left(8 \right) = \sum_{1 \leq n < N} \frac{1}{n^{s}} - \int_{1}^{N} \frac{dx}{x^{s}} = \sum_{1 \leq n < N} \delta_{n}(s), (N=2,3,\cdots).$$

Pf: Define
$$\delta_n(s) = \int_n^{h+1} \left(\frac{1}{n^s} - \frac{1}{x^s}\right) dx$$
 (entire)

By path integral of
$$f(z) = S z^{-S-1} (fn \text{ Re } z > 0)$$

along $z(t) = x + t(n-x) , t \in [0,1]$, we have
 $\left| \frac{1}{n^s} - \frac{1}{x^s} \right| \leq \int_0^1 |S| |[x + t(n-x)]^{-S-1} ||n-x| dt$
 $\leq \frac{|S|}{n^{\sigma_4}} \qquad fn \quad x \in [n, n+1] \quad (where \ \sigma = \text{Re } S)$
 $\Rightarrow |\delta_n(S)| \leq \int_n^{n+1} |\frac{1}{n^s} - \frac{1}{x^s}| dx \leq \frac{|S|}{n^{\sigma+1}}.$

Summing up

$$\sum_{n=1}^{N-1} \delta_n(s) = \sum_{n=1}^{N-1} \int_n^{n+1} (\frac{1}{n^s} - \frac{1}{x^s}) dx = \sum_{n=1}^{N-1} \frac{1}{n^s} - \int_1^N \frac{dx}{x^s}$$

$$\frac{\text{Gor 2.6}}{S(S) - \frac{1}{S-1}} = H(S)$$
where $H(S) = \sum_{n=1}^{\infty} \delta_n(S)$ is hold. in $\{\text{Re}(S) > 0\}$

$$\frac{Pf}{F}: For Re(S) > 1,$$

$$\text{the LHS of the formula (8)} \rightarrow S(S) - \frac{1}{S-1} \quad as \quad N \rightarrow \infty.$$
For the RHS, $Prop 2.5 \Rightarrow |\delta_n(S)| \leq \frac{|S|}{|\eta|^{ReS+1}}, \forall n$

Prop 2.7 Suppose
$$S = T + i \pm (T \pm ER)$$
. Then $\forall T_0 \in (0, 1]$,
 $(T_0 = 0 \text{ is not needed})$
and $\forall E > 0$, $\exists \text{ constant } C_E$ (depending on $E > 0$ mby)
(i) $|S(S)| \leq C_E |\pm|^{1 - T_0 + E}$ for $T_0 \leq T \neq |\pm| \geq 1$.
(ii) $|S(S)| \leq C_E |\pm|^E$ for $1 \leq T \neq |\pm| \geq 1$.

<u>Remark</u>: In particular, one has

$$\begin{cases} 5(|+\lambda+\rangle) = O(|t|^{\epsilon}) & a_{0}|t| \rightarrow 0 \\ 5(|+\lambda+\rangle) = O(|t|^{\epsilon}) \end{cases}$$

$$\frac{Pf \text{ of } Pmp 2.7}{Pmp 2.5} :$$

$$Pmp 2.5 \Rightarrow [\delta_{n}(s)] \leq \frac{|s|}{n^{\sigma+1}} \leq \frac{|s|}{n^{\sigma_{0}+1}}$$

$$And \quad \delta_{n}(s) = \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx$$

$$aloo \Rightarrow [\delta_{n}(s)] \leq \left[\frac{1}{N^{s}}\right] + \left[\frac{1}{x^{s}}\right] \quad fn \quad x \in [n, n+1]$$

$$\leq \frac{2}{n^{\sigma}} \leq \frac{2}{n^{\sigma_{0}}}$$

$$Then \quad \forall \ 0 \leq \delta \leq 1$$

$$\left[\delta_{n}(s)\right] = \left[\delta_{n}(s)\right]^{\delta} \left[\delta_{n}(s)\right]^{1-\delta} \leq \left(\frac{|s|}{n^{s+1}}\right)^{\delta} \left(\frac{2}{n^{\sigma_{0}}}\right)^{1-\delta}$$

$$\leq \frac{2|s|}{n^{\sigma_{0}+\delta}}$$

If $0 < \varepsilon \leq \sigma_0$, then $\delta = 1 - \sigma_0 + \varepsilon \leq 1$ $\therefore |\delta_n(S)| \leq \frac{2|S|^{1 - \sigma_0 + \varepsilon}}{n^{1 + \varepsilon}}$. Cor 2.6 $\Rightarrow |S(S)| \leq \frac{1}{|S-1|} + 2|S|^{1 - \sigma_0 + \varepsilon} \sum_{n=1}^{\infty} \frac{1}{n^{1 + \varepsilon}}$ $\forall \sigma \geq \sigma_0 \text{ and } |t| \geq 1$ For $\sigma \geq 2$, $|S(S)| \leq \frac{1}{n^{-1}} \leq \frac{\infty}{n^{-1}} + \frac{1}{n^{-1}} \leq \frac{1}{n^{-1}}$

 $|\mathcal{Z}(S)| \leq C + \left(2 \cdot 3^{1+\epsilon} \sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}}\right) |\mathbf{x}|^{1-\sigma_0+\epsilon} \leq C_{\epsilon} |\mathbf{x}|^{1-\sigma_0+\epsilon}$

Together
$$\Rightarrow$$
 for $0 \le 0 \le 0 \le 1 \le 1 \le 1$, we thave
 $|5(s)| \le C_{\varepsilon} |t|^{1-\sigma_{0}+\varepsilon}$ (a new C_{ε})
In particular, choosing $\varepsilon > 0$ sufficiently small, $\exists 5' \le 1 \le t$.
 $|3(s)| \le C_{\varepsilon'} |t|^{\delta'}$ for $0 \le 0 \le 0 \le \varepsilon = (tt/2)$
Hence for $\varepsilon > 0$, $\delta = |-\sigma_{0}+\varepsilon > 1 > \delta'$, and we have
 $|3(s)| \le C_{\varepsilon'} |t|^{\delta}$, $\forall 0 \le 0 \le \varepsilon = (tt/2)$
Hence for $\varepsilon > 0$, $\delta = |-\sigma_{0}+\varepsilon > 1 > \delta'$, and we have
 $|3(s)| \le C_{\varepsilon'} |t|^{\delta}$, $\forall 0 \le 0 \le \varepsilon = tt/2$
Therefore, we have proved that
 $\forall \varepsilon > 0$, $|5(s)| \le C_{\varepsilon} |t|^{1-\sigma_{0}+\varepsilon}$ on $0 \le 0 \le \varepsilon = |t|^{2}|$
This proves (i).
To prove (i), for $\sigma \ge 1 \le (tt)^{2}$, $\Theta = [0, 2\pi]$
with radius $r \le 1$
 $t \le circle = s + re^{10}$, $\Theta = [0, 2\pi]$
 $vith radius $r \le 1$
 $t = \varepsilon = t$ in (i), we have
Take $\sigma = 1 - t \le \varepsilon = t$ in (i), we have$

$$|\mathcal{Z}(\mathsf{s}+\mathsf{r}e^{\mathsf{i}\Theta})| \leq C_{\mathsf{r}} |\mathsf{t}+\mathsf{r}\mathsf{i}\mathsf{u}\theta|^{|-(\mathsf{r}\mathsf{r})+\mathsf{r}|} \leq C_{\mathsf{r}} |\mathsf{t}|^{\mathsf{2}\mathsf{r}} \qquad \text{for } |\mathsf{t}|-\mathsf{r}| \geq |_{\bullet}.$$

$$\begin{split} If ||t|-r\leq | \implies |t|\leq 2, \\ \implies |\Im(s+re^{i\Theta})| \text{ is bounded (depending on } r) \\ \implies |\Im(s+re^{i\Theta}-1)| \geq |s-1|-r=1-r \end{split}$$

Hence $|\zeta(s+re^{i\theta})| \leq C_r'|t|^{2r}$ $\forall |t| \geq |(z \tau \geq 1)$ Then Cauchy integral formula $\Rightarrow |\zeta(s)| \leq \frac{1}{2\pi r} \int_{0}^{2\pi} |\zeta(s+re^{i\theta})| d\theta$ $\leq \frac{1}{r} C_r' |t|^{2r}, \quad \forall |t| \geq |z \tau \geq 1.$

Since 17 + 20 is arbitrary, we have that $\forall 0 < \varepsilon < 2$ $|5(5)| \leq C_{\varepsilon} |t|^{\varepsilon}$, $\forall |t| \geq |8| = 1$

This proves (ii).