- 1. Find the order of growth of the following entire functions

 (a) $f(z) = P(z) e^{Q(z)}$, where P,Q are polynomials of degree $p \ge 2$ respectively.
 - (b) $f(z) = e^{z^2}$ (c) $f(z) = c \cdot e^{z^2} = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}$
 - 2. Prove that there exists constant C > 0 such that $\left| \frac{1}{z} + \sum_{n=1}^{\infty} \frac{zz}{z^2 n^2} \right| \leq \left| + C \sum_{n=1}^{\infty} \frac{|y|}{y^2 + n^2}$ for all z = x + iy with $|x| \leq \frac{1}{z}$ and |y| > 1.
 - 3. Exercise 3 of Chapter 5 of the Textbook.
- 4. Exercise 10 of Chapter 5 of the Textbook.
- 5. Exercise 14 of Chapter 5 of the Textbook.

(End)