$$2$ Functions of Furite Order

Def: Let f be an entire function. If
$$
\exists p>0
$$
 s.t.

\nfor some constants A, $B>0$,

\n $|f(z)| \leq A e^{B |z|^\beta}$

\nthen we say that $\frac{1}{5}$ has an order of growth $\leq \beta$.

\nAnd define the order of growth of $\frac{1}{5}$ as

\n $\int_{\frac{1}{5}} z = \overline{u} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}$

\nThus an order of growth $\leq \beta \leq \frac{1}{5}$.

$$
\underline{\psi} \cdot \text{The order of growth of } e^{z^2} \text{ a } z. \text{ (Ex.)}
$$

$$
\frac{\text{Remarks: } \bullet \quad \text{Clearly, } \exists j \quad f \quad \text{has an order of growth} \leq \beta_1 \quad \text{and} \quad \beta_1 < \beta_2, \\
 \text{then } \quad f \quad \text{has an order of growth} \leq \beta_2 \quad (E \times \%)
$$

• If 6 easy to see that
$$
f\alpha
$$
 $f(z) = e^{z^2}$ ($\beta_5 = 2$)
\n $\exists A, B>0$ s.t.
\n $|f(z)| \le A e^{B|z|^{\beta_5}}$, $\forall z \in C$.
\n $\forall t, \bar{u}$ general, the definition of β_5 only implies
\n $\forall \epsilon > 0$, $\exists A, B>0$ s.t.
\n $|f(z)| \le A e^{B|z|^{\beta_5 t}} \qquad \forall z \in C$.

Then 2.1 If
$$
f
$$
 is an entire function and has an order of growth $\leq \beta$,
\nthen

\n(i) π (r) $\leq C r^{\beta}$ for some $C > 0$ as sufficiently large r .

\n(ii) If τ_1, τ_2, \dots are the zeros of f with $\tau_k \neq 0$, then

\n $\forall s > \beta$ we have

\n
$$
\sum_{k=1}^{\infty} \frac{1}{|\zeta_k|} s < \infty
$$

$$
\begin{aligned}\n\mathbb{P}\{\cdot \quad \mathcal{I}\} &+ (0)=0, \text{ then} \\
&\quad \mathcal{F}(z) = \frac{f(z)}{z^{\ell}}, \text{ where } l = \text{order of } z^{\text{pro}} \text{ at } 0, \\
&\text{and either function } z \mathcal{F}(0) \text{ to } \mathcal{I} \text{ then } t^{\text{th}} \text{ asymptot} \Rightarrow \\
&\quad |F(z)| = \frac{|f(z)|}{|z|^{\ell}} \text{ is bounded in } |z| \leq 1 \} \text{ could} \\
&\quad (|F(z)| \leq |\zeta(z)| \leq A e^{\frac{B|z|^{\rho}}{2}} \text{ for } |z| > 1 \}.\n\end{aligned}
$$

Hence F also thas an order of growth $\leq \beta$, with the same zeros $z_1, z_2, \cdots, z_k \neq 0$, as f. And $\pi_+(r) = \pi_F(r) - 1$.

Therefue, we only need to show Thuz. If entire function f with $f(0) \neq 0$.

 $H + 10$ is then we can apply formula (2) in the previous section:

$$
\int_{0}^{R} \pi(r) \frac{dr}{r} = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} |f(Re^{i\theta})| d\theta - \log |f(0)|
$$

Take $R = zr$, we have $\int_{0}^{2r} \pi (t) \frac{dt}{t} \leq \int_{0}^{2r} \pi (t) \frac{dt}{t}$ $= \frac{1}{2\pi} \int_{-\infty}^{2\pi} \log |f(Re^{i\theta})| d\theta - log |f(0)|$ Since π is non-decreasing, $\pi(k) \geq \pi(r)$ of $t \in (r,2r)$. $\int_{-}^{2\mathsf{r}}\Pi(t)\frac{dt}{t}$ $\geq \mathsf{T}(r)\int_{r}^{2\mathsf{r}}\frac{dt}{t} = \mathsf{T}(r)\log 2$. $\frac{1}{2}$ \Rightarrow π (1) logz $\leq \frac{1}{2\pi}\int_{0}^{1}$ log $|f(Re^{i\theta})|d\theta - log|f(0)|$ $\leq L_{\text{top}}[Ae^{B(2\Gamma)^{\beta}}]-L_{\text{top}}(f(0))$ $= (2^{\beta}B)\gamma^{\beta} + \log \frac{A}{A}$ $\le C r P$ for r sufficiently large. $(\epsilon_X \wedge$ f en some $C > 0$ This proves part (i).

 $($ so me can see that in givenal, C and has large r needed depends on the function f and p.)

To prove part (ii), we note that there is only faitaly many

$$
38005
$$
 of f inside $|z_{k}| < 1$ and $|z^{i} \le |z_{k}| < z^{i+1}$

Then
$$
\sum_{1 \leq |\tilde{c}_{k}| \leq 2^{N+1}} \frac{1}{|\tilde{c}_{k}|} = \sum_{j=0}^{N} \left(\sum_{2^{j} \leq |\tilde{c}_{k}| \leq 2^{j+1}} \frac{1}{|\tilde{c}_{k}|} \right)
$$

$$
\leq \sum_{j=0}^{N} \frac{1}{2^{j}} \#\{\tilde{c}_{k}: 2^{j} \leq |\tilde{c}_{k}| < 2^{j+1}\}
$$

$$
\leq \sum_{j=0}^{N} \frac{1}{2^{j}} \pi_{L}(2^{j+1})
$$
by part(i)
$$
\leq C \sum_{j=0}^{N} \frac{1}{2^{j}} \sum_{j=0}^{N} \frac{1}{2^{j}} \sum_{j=0}^{N} \sum_{j=0}^{N} \frac{1}{2^{j}} \sum_{j=0}^{N} \sum_{j
$$

(Can't be improved to s=p)

$$
\underbrace{eq1}_{z} \quad \text{let} \quad \underbrace{f(z)}_{z} = \sin \pi z = \underbrace{e^{i\pi z} - e^{-i\pi z}}_{z},
$$

$$
Tlyu \t1-f(z) \t\leq C^{T|z|} \t\t\t y z \in \mathbb{C}. \t\t (Ex!)
$$

ie \t
$$
S \text{ has an order of growth } \leq 1.
$$

On the often hand,
$$
ig \neq p > 0
$$
, A, B>0 s.i.
 $|f(z)| \leq Ae^{BEI^{\beta}}$, $Y=CL$.

$$
T^{\text{heat}} \quad \left| \frac{e^{-\pi y} - e^{\pi y}}{z} \right| = |f(iy)| \leq A e^{B|y|^{p}}
$$
\n
$$
\Rightarrow \quad \left| - e^{-2\pi y} \right| \leq 2A e^{(By)^{p} - \pi y} \quad \text{for } y > 0
$$

$$
\exists f \quad p < 1
$$
, we have $1 \leq zA \quad \text{lim.} \quad e^{ByP-ry} = 0$

which is a contradiction.

$$
\therefore \qquad \beta_5 = \bar{w}_5 \ \rho = 1
$$

Note that the gives are
$$
n \in \mathbb{Z}
$$
, the π is $2! \Rightarrow \sum_{n=0}^{\infty} \frac{1}{\ln s} < l \Rightarrow$

\nBut $\sum_{n=0}^{\infty} \frac{1}{\ln s} \cdot \frac{1}{n}$ divides $f \circ l \Rightarrow$ $s \leq l$

$$
292 \quad \frac{1}{2}(7) = \cos 7^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \frac{7}{2^n}
$$

Then $\rho_{s} = \frac{1}{2}$ (Ex!)

 f tres zeros at $z_n = [(n+\frac{1}{2})\pi]^2$, and

$$
\sum_{n\in\mathbb{Z}}\frac{1}{|z_{n}|^{s}}=\sum_{n\in\mathbb{Z}}\frac{1}{[(n+\frac{1}{2})\pi]^{2s}}\left\{\begin{array}{cc}\text{(MIPUS)}&\text{if }s>\frac{1}{2}\\ \text{diverg}&\text{otherwise.}\end{array}\right.
$$

53 Infinite Products

Generalities 3.1

 \Rightarrow

Left	Given	$\{a_1\}_{n=1}^{\infty}$	$\{a_1 \in \mathbb{C}\}$, we say that the if the product $\{a \}$ and product\n
\n \overline{w} \n	\n \overline{w} \n	\n \overline{w} \n	
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n \overline{w} \n	\n \overline{w} \n		
\n			

$$
(1 + \omega \omega) = \frac{N}{\prod_{n=1}^{N}} (1 + a_{n}) = \frac{N}{\prod_{n=1}^{N}} e^{\log(1 + a_{n})} = e^{\sum_{n=1}^{N} \log(1 + a_{n})}
$$

 $\ddot{}$

By the definition of
$$
lg(it\theta_n)
$$
, we have fn sufficiently large n ,
\n $|lg(it\theta_n)| \leq 2|a_n|$ fn $|a_n| \leq \frac{1}{2}$
\n $l.e. $\sum_{n=1}^{M} |log(it\theta_n)| \leq 2 \sum_{n=1}^{N} |a_n|$
\n $\sum |a_n| \leq \omega \Rightarrow \sum_{n=1}^{M} log(it\theta_n)$ *conveys absolutely*
\n \therefore $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n) = e^{\sum_{n=1}^{\infty} log(it\theta_n)}$ *exists.*
\n $\exists n$ $\forall in \omega$ *and*
\n $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n)$ *which and*
\n $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n) = \prod_{n=1}^{n_0} (t\theta_n) \lim_{N \to \infty} \frac{N}{n \times n_0} (t\theta_n) = 0$
\n $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n) = \prod_{n=1}^{n_0} (t\theta_n) \lim_{N \to \infty} \frac{N}{n \times n_0} (t\theta_n) = 0$
\n $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n) = e^{\sum_{n=1}^{\infty} \frac{N}{n-1}(t\theta_n)} + 0$
\n $lim_{N \to \infty} \frac{N}{n-1}(t\theta_n) = e^{\sum_{n=1}^{\infty} \frac{N}{n-1}(t\theta_n)} + 0$$

Prop3.2	Suppose	$\{F_n(z)\}\$ is a seg. of the following on Ω (open).
If $\exists C_n > 0$ such that		
$\sum C_n < \infty$ and		
$ F_n(z) - 1 \le C_n$, $\forall z \in \Omega$,		
then (i) $\prod_{n=1}^{\infty} F_n(z)$ converges uniformly in Ω to a		
dole. function $F(z)$.		
(ii) If $F_n(z) \neq 0$, $\forall z \in \Omega$, $\forall n$, then		
$\frac{F(z)}{F(z)} = \sum_{n=1}^{\infty} \frac{F_n(z)}{F_n(z)}$.		

24. c Write
$$
F_n(z) = |t \text{ and } z|
$$

\nThen by assumption $|Q_n(z)| \leq C_n$

\nand $\forall y \text{ around } z \text{ and } z \text{$

By Prop3.1, the limit
$$
F(z) + 0
$$
, $0 \neq z \neq 0$.
\nHence V cp1, subset KCR, $\exists \delta > 0$ s.t. $|G_{n}(z)| \geq \delta$.
\n
$$
\therefore \sum_{n=1}^{N} \frac{F_{n}(z)}{F_{n}(z)} = \frac{G_{n}(z)}{G_{N}(z)} \Rightarrow \frac{F(z)}{F(z)} \text{ uniformly } m \neq 0
$$
\n
$$
\therefore \sum_{n=1}^{N} \frac{F_{n}(z)}{F_{n}(z)} = \frac{G_{n}(z)}{G_{N}(z)} \Rightarrow \frac{F(z)}{F(z)} \text{ uniformly } m \neq 0
$$
\n
$$
\therefore \sum_{n=1}^{N} \frac{F_{n}(z)}{F_{n}(z)} = \sum_{n=1}^{N} \frac{F_{n}(z)}{F_{n}(z)} \cdot \frac{F_{n}(z)}{G_{N}(z)} = \sum_{n=1}^{N} \frac{F_{n}(z)}{F_{n}(z)} \cdot \frac{F_{n}(z)}{G_{N}(z)}
$$

3.2 Example the productformula forthe sinefunction

$$
\frac{\sin \pi z}{\pi} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right) \qquad (3)
$$

we'll prove it by showing that

$$
\pi \text{ (of } \pi z = \text{lniz } \sum_{N \ni t \cdot \infty} \frac{1}{n |s|N} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}
$$
 (4)

$$
\text{Remarks: (i) Foundula (4) holds } \{c_1 \} \neq c_1 \land c_2 \text{ only}
$$

(i)
$$
\lim_{N \to +\infty} \sum_{|n| \le N} \frac{1}{z+n}
$$
 is the principal value of $\sum_{n=-\infty}^{\infty} \frac{1}{z+n}$

13 of (3) by (4).	
Write	$G(z) = \frac{\omega}{\pi}$
$P(z) = z \prod_{n=1}^{\infty} (1 - \frac{z^{2}}{n^{2}})$	
$P(z)$ is well-defined since	$ \frac{-z^{2}}{n^{2}} = \frac{ z ^{2}}{n^{2}} \leq \frac{R^{2}}{n^{2}}$, $\forall z \in \{ z \leq R \}$
$Pmp 3.2 \Rightarrow \prod_{n=1}^{\infty} (1 - \frac{z^{2}}{n^{2}})$ and have $P(z)$ is well-defined	
$m \{ z \leq R \}$. Since R>0 is arbitrary, $P(z)$ is entire	

Again by
$$
Brap3.2
$$
, $fu \text{ } \in \mathbb{C} \setminus \mathbb{Z}$,
\n $\frac{P(z)}{P(z)} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{zz}{z^2 - n^2} = \pi \cot \pi z$ by formula (4)

Hence
$$
f \circ r \neq \theta \wedge \sqrt{z}
$$

\n
$$
\left(\frac{P(z)}{G(z)}\right)' = \frac{P(z)}{G(z)} \left[\frac{P(z)}{P(z)} - \frac{G(z)}{G(z)}\right]
$$
\n
$$
= \frac{P(z)}{G(z)} \left[\pi(\sigma \pi z) - \frac{\cos \pi z}{\frac{\sin \pi z}{\pi}}\right] = 0
$$

$$
Since \quad \mathbb{C}\setminus\mathbb{Z} \text{ is connected,} \quad P(\mathbb{Z}) = C G(\mathbb{Z}) \quad \text{for some constant } C.
$$
\n
$$
(and \quad clearly \quad extrunds \quad \text{to whole} \quad \mathbb{C} \quad \text{?}
$$

$$
left\{\begin{array}{ll}\n\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Left} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} & \text{if } \frac{1}{2} \\
\text{Right} & \text{if } \frac{1}{2} & \text{
$$

$P\left\{\n \begin{array}{l}\n \text{of } \text{formula (4)} \\ \text{Let } F(z) = \pi \text{ for } \pi \infty.\n \end{array}\n \right.$	$z \in \mathbb{C} \setminus \mathbb{Z}$
$\text{Then } (i) F(z+1) = F(z) = z \in \mathbb{C} \setminus \mathbb{Z}$	
$\text{(ii)} F(z) = \frac{1}{z} + F_0(z)$, where F_0 analytic near O .	
$\text{(iii)} z = n \in \mathbb{Z}$ are simple pole of $F(z)$, ∞	
$F(z)$ has no other singularities.	

Note that

$$
G(z) = lim_{N \to t\infty} \sum_{|\eta| \le N} \frac{1}{z + \eta} = \frac{1}{z} + \sum_{\eta=1}^{\infty} \frac{2z}{z^2 - \eta^2}
$$

Then by (i), $\Delta(z+1) = \Delta(z)$ (periodic)

By (i')
$$
\Delta(z) = \frac{1}{z} + F_0(z) - \frac{1}{z} - G_0(z)
$$
 have $z = 0$
\nwhere $G_0(z) = \frac{z}{1-z}$
\n
$$
= F_0(z) - G_0(z)
$$
 and
\nby $\Delta(z) = \frac{z}{1-z}$
\n
$$
= F_0(z) - G_0(z)
$$
 and
\n
$$
= F_0(z) - G_0(z)
$$
 and
\n
$$
= G_0(z)
$$
 and
\n

 $\overline{}$

Now
$$
f_{\alpha}
$$
 $G(z)$,
 $G(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$

 \Rightarrow On $\{z=x+y: |x|\leq \frac{1}{2}e |y|>1\}$, $\left| \left(\frac{1}{q(z)} \right) \right| \leq \left| \frac{1}{z} \right| + \sum_{n=1}^{\infty} \left| \frac{2z}{z^2 - n^2} \right|$ $5 + C \sum_{h=1}^{\infty} \frac{|\Psi|}{v^2 + h^2}$ (Ex!)

By Riemann sum
\n
$$
\sum_{b=1}^{\infty} \frac{|y|}{y^{2}+n^{2}} \le \int_{0}^{(x)} \frac{|y|}{y^{4}x^{2}} dx
$$
\n
$$
= \int_{0}^{\infty} \frac{|y|}{y^{2}+y^{2}x^{2}} dy dx
$$
\n
$$
= \int_{0}^{\infty} \frac{dx}{1+x^{2}} = B
$$

 $\Rightarrow |G(z)| \text{ is also bounded on } \{z=x+iy: |x| \leq \frac{1}{z} s[y|z|]\}.$ $2. | \triangle (z)|$ is bounded on $\{z = x + iy : |x| \leq \frac{1}{z} \leq |y| > 1\}$ Since $\Delta(z)$ is entire, it is brunded on 34251142 $|x|\leq 28$ $|y| \leq 15$

Togetter we flave (AZ) is bounded on {Z=X+ig:K|<=} Then by periodicity $\triangle E+1)=\triangle E$), we conclude that

 \triangle (Z) is bounded on C . Henco Liourille's Thm \Rightarrow $\Delta(z) =$ canstant = c Finally $c = \Delta(-z) = F(-z) - G(-z)$ = $\pi (0)^{-(-\pi z)} - \left[\frac{1}{-z} + \sum_{n=1}^{\infty} \frac{z(-z)}{(-z)^2 - n^2} \right]$ $= -\left[\pi (0) + \pi z - \left(\frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^{2} - n^{2}}\right)\right]$ $= -\Delta(\overline{z}) = -C$

$$
\Rightarrow C=0
$$

\n
$$
\Rightarrow \pi(\sigma)\pi\overline{z} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^{2-n^{2}}} \times
$$