

As
$$
|Fe| \rightarrow 0
$$
 as $|R| \rightarrow +\infty$, we conclude that
\n $\{w_j\}$ is bounded. Therefore $\exists w \in S \text{ s.t. } w_j \rightarrow w$ (by passing to
\nBy maximum principle (Thm45), we can't be an
\ninterior point of S. Hence $w \in \partial S$.
\nCartinually, of $F \cap S$ and $|F| \le |m \ge S$.
\nCartinually, of $F \cap S$ and $|F| \le |m \ge S$.
\n $\{e = |F_{\epsilon}(w)| \le |F(w)| |e^{-\epsilon w^2 E}| \le 1$,
\ni.e. $|F(z)| \le e^{\epsilon |z|^{\frac{2}{k}}}$, $\forall z \in S$
\n $\Rightarrow |F(z)| \le e^{\epsilon |z|^{\frac{2}{k}}}$, $\forall z \in S$.
\nSince $\epsilon > 0$ is arbitrary, $|F(\epsilon)| \le 1$, $\forall z \in S$.

Ch5 Entire Functions

1 Jensen's Formula

In this section ,
$$
D_R = \{z : |z| < R\}
$$
 (R>0)
 $C_R = \{z : |z| = R\} = DPR$

Thm1.1	(Jensen's Formula)
Let . } Ω = open set s1. $\overline{D}_R \subset \Omega$. (from OER)	
• $\int \text{Rob. on } \Omega$,	
• $\int (z) + 0$ $\int n z = 0$ or $z \in C_R$	
• $z_{1}, \dots, z_{N} \in D_R$ are (all) the gross of $\int \text{in } D_R$	
• $z_{1}, \dots, z_{N} \in C_R$ (countable multiplicity)	
Then	(1) $\log \{0\} = \sum_{k=1}^{N} \log \frac{ z_{k} }{R} + \frac{1}{2N} \int_{0}^{2N} \log \{Re^{\delta S}\}\ $ do
If. (My Steps are different from the Text)	
Step1 If. $\int \text{St} \text{d}b$ on \overline{D}_R and $\int \text{d}\overline{E} \neq 0$, $\forall z \in \overline{D}_R$, then	
Step1 If. $\int \text{d}b$ do on \overline{D}_R and $\int \text{d}\overline{E} \neq 0$, $\forall z \in \overline{D}_R$, then	
Step1 If. $\int \text{d}b$ do on $\overline{D}_R \Rightarrow \int \text{d}b$ and $\int \text{d}\overline{E} \neq 0$, $\forall z \in \overline{D}_R$, then	
Step1 If. $\int \text{d}b$ do on $\overline{D}_R \Rightarrow \int \text{d}b$ do on \overline{D}_{R+e} for some $\xi > 0$.	
Since \overline{D}_{R+e} is simply connected x $\int \text{d}z \neq 0$	

 $\mathcal{F}(\mathcal{F}) = e^{\mathcal{A}(\mathcal{F})}$. (Thin 6.2 in Ch3 o Text

$$
\Rightarrow (g(z)) = |e^{\theta(z)}| = e^{\text{Re } \theta(z)}
$$

By mean value property (of harmonic functions)
($C\alpha$ 7.3 \bar{u} $Ch3$ of Text),

$$
\frac{1}{2\pi} \int_{0}^{2\pi} \text{log} [g(\text{Re}^{\text{te}})] d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \text{Re} \theta (\text{Re}^{\text{te}}) d\theta
$$

$$
= \text{Re } \theta(0)
$$

$$
= \text{log } |g(0)| \cdot \text{d}t
$$

$$
\frac{51202}{5} \int_{0}^{2\pi}log|1 - ae^{i\theta}|d\theta = 0 \qquad \forall |a| < 1
$$

Pf: consider $F(z)=1-az$ on $D=\{ |z| < 1 \}$ Then \bullet $F(z)$ $\bar{\circ}$ fiolo. on $\bar{\mathbb{D}}$, . $F(Z) \neq 0$ on \overline{D} , since $|a| < 1$ By Step 1, $0 = log(F(0)) = \frac{1}{2\pi} \int_{0}^{2\pi} log|F(e^{i\theta})| d\theta$ $= \frac{1}{2\pi} \int_{0}^{2\pi} \log |1 - ae^{i\theta}| d\theta$ $\overline{\mathbb{X}}$

Step3 *General can*
\n
$$
Pf: By aquurbation & Thm1.1 of U_{13} ,
\n $f(z) = (z-z_{1}) \cdots (z-z_{n}) g(z) = \int_{C} c \cdot sin\theta \cdot h \cdot du \cdot d\theta$
\n $g \text{ on } \Omega$ $s.t. g(z) \neq 0, y \neq \epsilon \overline{D}R$.
$$

Then
$$
\text{Log } |f(0)| = \text{Log } |x_1 - z_0| |g(0)|
$$

\n
$$
= \sum_{k=1}^{N} \text{Log } |z_k| + \text{Log } |g(0)|
$$
\n
$$
\left(\text{By Step 1}\right) = \sum_{k=1}^{N} \text{Log } |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |g(ze^{i\phi})| d\theta.
$$
\n
$$
\left(z_k \notin C_R\right) = \sum_{k=1}^{N} \text{Log } |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } \frac{|f(Re^{i\theta})|}{|Re^{i\theta} \cdot z_1| \cdots |Re^{i\theta} \cdot z_0|} d\theta
$$
\n
$$
= \sum_{k=1}^{N} \text{Log } |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta
$$
\n
$$
= \sum_{k=1}^{N} \text{Log } |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta
$$
\n
$$
= \sum_{k=1}^{N} \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta
$$
\n
$$
\left(\text{Divide in } \frac{1}{\pi}) = \sum_{k=1}^{N} \text{Log } \frac{|z_k|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta
$$
\n
$$
= \frac{1}{2\pi} \sum_{k=1}^{N} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta
$$
\n
$$
\left(\frac{iz_k}{2} < 1\right) = \sum_{k=1}^{N} \text{Log } \frac{|z_k|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} \text{Log } |f(Re^{i\theta})| d\theta \right)
$$

Def	Notations as in Thm1.1, we define the function of $r \in (0, R)$
$T_{f}(r) = number of zeros of f$ in D_{r}	
$(a, sin\theta_{ij} \tau_{1}(r))$	$(cavity\tau_{ij}) \geq T_{i}(r_{i}) \geq T_{i}(r_{i})$
$\frac{F_{unun}(1,2, T_{i} > F_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{i}(r_{i}) \geq T_{i}(r_{i})}$	
$\frac{F_{unun}(1,2, T_{i} \leq x_{i})}{T_{$	

we've proved the Lemma XX.

(2)
$$
\int_{0}^{R} \pi(r) \frac{dr}{r} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\theta})| d\theta - \log |f(\theta)|
$$

 $\int \pi(r) \frac{dr}{r} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\theta})| d\theta - \log |f(\theta)|$