Thm 52 & Cor 5.3 If f is holomaphic in a simply connected
domain
$$IZ$$
, then
(1) $\exists F = IZ \Rightarrow C$ holo st. $F' = f$;
(2) $S_{x} f(z) dz = 0 \quad \forall closed$ curve $\forall m IZ$.

Thu6.1 Suppose
$$\mathcal{I}$$
 is simply connected,
 $1 \in \mathcal{R}$ but $0 \notin \mathcal{I}$.
Then \exists a branch of the logarithm $F(z) = \log_{\mathcal{I}} z$ st.
(i) F is 4000 . in \mathcal{I}
(ii) $e^{F(z)} = z$, $\forall z \in \mathcal{I}$
(iii) $F(r) = \log r$ $\forall r \in \mathbb{R}$ and near to 1.

• Principal branch of the logarithm

$$\int SZ = C \setminus C \cdot G_0, OJ,$$

 $\log z = \log r + \overline{i} \Theta$ with $|\Theta| < T\overline{i}$ and $z = r e^{\overline{i} \Theta}$

.

§7 Fourier Series and Harmonic Functions

$$\frac{Thm 7.1}{Then} f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n \text{ converges } \tilde{u} D_R(z_0).$$
Then $\forall r \in (0, R),$

$$\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta = \begin{cases} a_n r^n, & fn n \ge 0\\ 0, & fn n < 0 \end{cases}$$

<u>Remarks</u> (i) This is just the Cauchy integral famula applies to the circle $\Im(\Theta) = \frac{1}{20 + 10^{10}}, \quad \Theta \in [0, 2\pi]$

(ii) The LHS is the Fourier coefficients (up to a const.)
of the 2TT-periodic function
$$f(z_0+re^{i\theta})$$
 (for fixed r.)

$$\frac{G_{2}7.2 \times 7.3}{\text{Then}} = 2 + iv \quad \text{holo. in } D_{R}(z_{0}),$$

$$Then \quad f(z_{0}) = \pm \int_{0}^{2T} f(z_{0} + re^{i\theta}) d\theta, \quad \forall \; 0 < r < R.$$

$$U(z_{0}) = \pm \int_{0}^{2T} \int_{0}^{2T} u(z_{0} + re^{i\theta}) d\theta, \quad \forall \; 0 < r < R.$$

$$These are \quad \underline{mean-value \; property} \quad fr \; \underline{holomorphic} \; and \; \underline{harmanic} \\ function \; respectively.$$

$$\left(\text{Evd of Review}\right)$$

Def:
$$\forall a > 0$$
, let $S_a = \{z \in \mathbb{C} : |Im(z)| < a\}$ (a horizontal strip)
Then
 $J_a = \begin{cases} f: S_a \Rightarrow \mathbb{C} : f \text{ holo.on } S_a \text{ and } \exists A > 0 \text{ s.t.} \\ If(x+iy)| \leq \frac{A}{Hx^2}, \forall x \in \mathbb{R} \neq |y| < a \end{cases}$
and $J = \sum_{a>0} J_a$

Remark: For a fixed y, with
$$|y| < a$$
, the condition that
 $\exists A > 0 \ s.t. |f(x_t)g_2| \le \frac{A}{(t+x^2)}, \forall x \in \mathbb{R}$

is usually referred as "moderate decay" on the thorizontal line Im(z) = y.

egs (i) Charly
$$f(z) = e^{-\pi z^2} \in \mathcal{F}_a$$
, $\forall a > 0$ (Ex!)
(ii) $\forall c > 0$, the function
 $f(z) = \frac{1}{\pi} \frac{c}{c^2 + z^2} \in \mathcal{F}_a$, $\forall a \in (0, c)$. (Ex!)
Clearly, $f(z) \notin \mathcal{F}_a$ for $a \ge c$ as $z = \pm ci$ are poles.

Remarks: (1) For integer
$$n \ge 1$$
, $f \in \exists_a \Rightarrow f^{(n)} \in \exists_b, \forall 0 \le a$.
(Ex 2 of Ch 4 of Text)