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1. Show that for a ∈ Z and t > 0 the following functions belong to class F .

(a) f(x) = e−πt(x+a)
2

.

(b) f(x) = e−2πiax

cosh(πxt ) .

Proof.

(a) We prove f ∈ F1, so let z = x+ iy with |y| < 1,

|f(z)| = eπty
2

e−πt(x+a)
2

≤ eπte−πt(x+a)
2

We make a general remark that if a continuous function g : R → R
has a limit at infinity, then it must be bounded. We want to show
that (1 + x2)e−πt(x+a)

2

is bounded, so we calculate its limit, using
L’Hôpital’s rule,

lim
x→∞

(1 + x2)e−πt(x+a)
2

= lim
x→∞

(1 + x2)

eπt(x+a)2

= lim
x→∞

2x

2πt(x+ a)eπt(x+a)2

= lim
x→∞

1

πt(1 + a
x )e

πt(x+a)2

= 0.

So we are done in showing f ∈ F1.

(b) The idea is similar to a).
We prove f ∈ Fπt

4
, so let z = x+ iy with |y| < πt

4 . The norm of the
numerator of f :

e2πay ≤ eπ
2at
2

is bounded. On the other hand, the norm square of the denominator

1



is 1:

| cosh(πz
t
)|2 = cosh2(

πx

t
) cos2(

πy

t
) + sinh2(

πx

t
) sin2(

πy

t
)

≥ cosh2(
πx

t
) cos2(

π

4
)

=
cosh2

2
.

It remains to calculate the limit:

lim
x→∞

1 + x2

cosh(πxt )
= lim
x→∞

2tx

π sinh(πxt )

= lim
x→∞

2t2

π2 cosh(πxt )

= 0.

2. If f ∈ Fa, a > 0. Then for any positive integer n, f (n) ∈ Fb whenever
0 < b < a.

Proof. Let δ = a − b > 0, then for any z = x + iy ∈ Sb, then disc Dδ(z)
centered at z with radius δ lies inside Sa. Cauchy estimate says that

|f (n)(z)| ≤
n!||f ||Dδ(z)

δn
.

Let A be the constant associated with the definition of f ∈ Fa. Then for
any z′ = x′ + iy′ ∈ Dδ(z), we have (for x large)

|f(z′)| ≤ A

1 + x′2
≤ A

1 + (|x| − δ)2
.

Finally, note that since

lim
x→∞

1 + x2

1 + (|x| − δ)2
= 1,

there exists a constant C such that 1+(|x|−δ)2 ≥ C(1+x2) for all x ∈ R.
Combining the above, we have

|f (n)(z)| ≤ C ′

1 + x2

with
C ′ =

n!A

δnC
.

1Since cosh(ix) = cos(x), sinh(ix) = i sin(x), we have cosh(x + iy) = cos(y − ix) =
cos y coshx+ i sin(y) sinh(x)
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3. Suppose Q is a polynomial of deg ≥ 2 with distinct roots, none lying on
the real axis. Calculate ∫ ∞

−∞

e−2πixξ

Q(x)
dx

in terms of the roots of Q. What happens when several roots coincide?

Proof. Suppose Q(z) = a0z
n + a1z

n−1 + · · · an, (a0 6= 0) we use the fol-
lowing lower bound of |Q(z)| for R = |z| large:

|Q(z)| ≥ |a0||z|n − |a1||z|n−1 − · · · |an|

= Rn(|a0| −
|a1|
R
− · · · |an|

Rn
)

≥ CRn

≥ CR2

for some constant C.

Now, we assume ξ ≤ 0. Choose an arbitrarily large R ∈ R so that all roots
of Q has modulus less than R. Let CR be the upper half circle of radius
R centered at the origin (running in anti-clockwise direction), by residue
theorem, we have∫

CR

e−2πixz

Q(z)
dz +

∫ R

−R

e−2πixξ

Q(x)
dx = 2πi

∑
αi

e−2πiαiξ

Q′(αi)
(1)

Where the sum on the right hand side is over all the roots of Q(z) lying
in the upper half-plane.
For the first term on the left hand side, we have∣∣∣∣∣

∫
CR

e−2πizξ

Q(z)
dz

∣∣∣∣∣ ≤
∫ π

0

e2πRξ sin θ

CR2
Rdθ

≤
∫ π

0

1

CR
dθ

=
π

CR
.

Therefore, if we take R→∞, we see that∫ ∞
−∞

e−2πixξ

Q(x)
dx = 2πi

∑
αi

e−2πiαiξ

Q′(αi)

the sum over all the roots of Q(z) lying in the upper half-plane.
Consider the polynomial Q̃(x) = Q(−x) and using the substitution x 7→
−x, we have for ξ ≥ 0 that∫ ∞

−∞

e−2πixξ

Q(x)
dx = −2πi

∑
βj

e−2πiβjξ

Q′(βj)

the sum over all the roots of Q(z) lying in the lower half-plane.
For multiple roots, the idea is the same, but the formula for the residues
would be more complicated.
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4. Prove that
1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|

whenever a > 0. Hence show that the sum equals coth(πa).

Proof. This would be the Poisson Summation formula. In fact let f(x) =
a

π(a2+x2) , g(x) = e−2πa|x| (both of them are of class F), then the formula
reads

∞∑
−∞

f(n) =

∞∑
−∞

g(n).

It remains to relate f and g using Fourier transform. It will be easier to
calculate ĝ. (You need Contour Integral to calculate f̂)

ĝ(ξ) =

∫ ∞
−∞

e−2πa|x|e−2πixξdx

=

∫ 0

−∞
e2π(a−iξ)xdx+

∫ ∞
0

e−2π(a+iξ)xdx

=
e2π(a−iξ)x

2π(a− iξ)

∣∣∣∣∣
x=0

x=−∞

+
e−2π(a+iξ)x

−2π(a+ iξ)

∣∣∣∣∣
x=∞

x=0

=
1

2π(a− iξ)
+

1

2π(a+ iξ)

=
a

π(a2 + ξ2)

= f(ξ).

For the last part, we do the calculations:

∞∑
n=−∞

e−2πa|n| = −1 + 2

∞∑
n=0

e−2πa|n|

= −1 + 2

1− e−2πa

=
1 + e−2πa

1− e−2πa

=
eπa + e−πa

eπa − e−πa
= coth(πa).

5. (a) Let F be a holomorphic function in the right half-plane that extends
continuously to the imaginary axis. Suppose |F | ≤ 1 on the imagi-
nary axis, and

|F (z)| ≤ Cec|z|
γ

for some C, c > 0 and γ < 1. Prove that |F | ≤ 1 on the right
half-plane.
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(b) More generally, let S be a sector whose vertex is the origin, and
forming an angle of π/β. Let F be a holomorphic function in S that
is continuous on the boundary. Suppose |F | ≤ 1 on the boundary,
and

|F (z)| ≤ Cec|z|
α

for some C, c > 0 and 0 < γ < β. Prove that |F | ≤ 1 on S.

Proof.

(a) The case γ ≤ 0 would be easy, and the case γ > 0 would follows from
part b). So we prove part b) only. (In fact γ ≤ 0 also works for part
b).

(b) Fix α with γ < α < β. By using a rotation, we may assume S is the
set

{z ∈ C : −π/2β < arg(z) < π/2β}.

For any small positive ε, LetGε(z) = F (z)e−εz
α

= F (z)e−ε exp(α log(z)),
note that we can choose a well-defined and holomorphic branch of log
on S. For any z = Reiθ ∈ S,

Re(zα) = Rα cos(αθ) ≥ δRα,

where
δ = cos(

πα

β
) > 0.

Therefore,

|Gε(z)| ≤ |F (z)|e−εδR
α

=

(
|F (z)|e−cR

γ

)
eR

γ(c−εδRα−γ)

The term in the parenthesis is bounded by assumption, and the remaining
term vanishes at the infinity since α > γ. This shows that Gε vanished at
the infinity, and so maximal M = maxS Gε must achieved at some point
a. If a ∈ S, the maximal modulus principle implies that F ∼= 0. So if
F 6∼= 0, a must be on the boundary, while |Gε| ≤ 1 on the boundary, we
thus have

|Gε| ≤ 1.

Taking ε→ 0+, we get the desired result.
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