
1. Curves in R3

Definition 1.1. A (parametrized smooth) curve α(t) is a smooth map

α : I ⊂ R → R3

from an interval I in R into R3 so that α is smooth. α is said to be
regular if α′ ̸= 0.

Let α : (a, b) → R3 is a curve. Let f : (c, d) → (a, b) with t =
f(σ) such that f ′ > 0, then α(f(σ)) : (c, d) → R3 is said to be a
reparametrization of α.

Let α be a regular curve defined on [a, b] and let t0 ∈ [a, b], the
arc-length is defined as:

s(t) =

∫ t

t0

|α′(u)|du.

If s(a) = −L1, s(b) = L2, then α(s) = α(s(t)) is a reparametrization
of α and α(s) is said to be parametrized by arc-length.

Fact: α = α(t) is parametrized by arc-length, that is t ‘represents’
arc-length from a fixed point iff |α′| = 1.

2. The Frenet formula

Let α(s) be the regular curve parametrized by arc length.

Let T⃗ = α′. Then

k(s) :=|T ′|(s) (curvature);

N(s) :=
1

k(s)
T ′(s) (normal, if k > 0);

B(s) :=T (s)×N(s) (binormal, if k > 0).

Fact: B′ = −τN , τ is called the torsion of α.

Theorem 2.1. (Frenet formula) Let α be a regular curve with curva-
ture k > 0. Then T

N
B

′

=

 0 k 0
−k 0 τ
0 −τ 0

 T
N
B

 .

We summarize some properties on curves:

Theorem 2.2. Let α be a regular curves in R3 parametrized by arc
length.

(i) Suppose the curvature k ≡ 0 if and only if α is a straight line.
(ii) Suppose the curvature k > 0 and the torsion τ ≡ 0 if and only

if α is a plane curve.
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(iii) Suppose the curvature k = k0 > 0 is a constant and τ ≡ 0, then
α is a circular arc with radius 1/k0.

(iv) Suppose the curvature k > 0 and the torsion τ ̸= 0 everywhere.
α lies on s sphere if and only if ρ2 + (ρ′)2λ2 =constant, where
ρ = 1/k and λ = 1/τ .

(v) Suppose the curvature k = k0 > 0 is a constant and τ = τ0 is a
constant. Then α is a circular helix.

(vi) Suppose α is defined on [a, b]. Let p = α(a) and q = α(b).
Then the length l of α satisfies l ≤ |p− q|. Moreover, equality
holds if and only if α is the straight line from p to q.

3. Review: Existence and uniqueness thoerems in ODE

Ref: Ordinary differential equations, Birkoff and Rota

We only consider the special case of linear ODE. LetA(t) = (aij(t))n×n

be a smooth family n× n matrix, t ∈ [a, b]. Consider the following ini-
tial valued problem (IVP): Given A and a constant x0 ∈ Rn, to find
x : [a, b] → Rn satisfying:{

x′(t) = A(t)x(t), t ∈ [a, b];
x(a) = x0.

Theorem 3.1. Given any x0 ∈ Rn, the exists a unique solution of the
above IVP.

Proof. (Sketch) For simplicity let us assume a = 0.
Existence: Define inductively, with x0(t) = x0 for all t, and

xk+1(t) = x0 +

∫ t

0

A(τ)xk(τ)dτ.

for k ≥ 0. Let M = supt∈[a,b] ||A||(t) and ||A(t)||2 = tr(AAT(t)). For
k ≥ 1, we have

|xk+1(t)− xk(t)| ≤ M

∫ t

0

|xk(τ)− xk−1(τ)|dτ.

Inductively, we have (why?)

|xk+1(t)− xk(t)| ≤Mk

∫ t

0

∫ τk−1

0

. . .

∫ τ2

0

∫ τ1

0

|x1(τ1)− x0(τ1)|dτ1dτ2 . . . dτk−1dτk

≤MkbkS

k!

where integration is over the domain t ≥ τk ≥ · · · ≥ τ1 and S =
supt∈[0,b] |x1(t)− x0(t)|.
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Hence
∑∞

k=1 |xk+1(t) − xk(t)| ≤ C for some constant C for all t ∈
[0, b]. This implies that xk → x∞ uniformly on [0, b] which satisfies:

x∞(t) = x0 +

∫ t

0

A(τ)x∞(τ)dτ,

(why?) Now x∞ is the solution of the above IVP.
Uniquess: Sufficient to prove that if x0 = 0, then any solution must

be trivial. So let x be such a solution, then

d

dt
||x||2 = 2⟨Ax,x⟩ ≤ 2M ||x||2.

Hence
d

dt

(
exp(−2Mt)||x||2

)
≤ 0.

This will imply that ||x||2 ≡ 0. (Why?) �

4. Fundamental theorem of the local theorey of curves

Theorem 4.1. Let κ(s) > 0 and τ(s) be smooth function on (a, b).
There exists a regular curve α : (a, b) → R3 with |α′| = 1, such that the
curvature and torsion of α are k, τ respectively.

Moreover, α is unique in the sense that if β is another curve satis-
fying the above conditions, then β(s) = α(s)P + c⃗ for some constant
orthogonal matrix P and some constant vector c⃗. Here α, β are con-
sidered as row vectors.

Proof. (Existence): Let

A(s) =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 .

Let X(s) be the 3× 3 matrix and fix s0 which is the solution of:{
X ′ = AX in (a, b);
X(s0) = I.

The solution exists by a theorem in ODE. We claim that X is orthog-
onal with determinant 1. In fact

(X tX)′ = (X t)′X +X tX ′ = (AX)tX +X tAX = X tAtX +X tAX = 0

because At = −A. Hence X tX = I because X t(s0)X(s0) = I. (Using
(XX t)′ may be more involved.) Hence X(s) is orthogonal. Since
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detX(s) = 1 or −1 and initially, detX(s0) = 1, we have detX(s) = 1.
Write

X =

 T̃

Ñ

B̃

 .

Define α(s) =
∫ s

s0
T̃ (σ)dσ. Let T,N,B be the tangent, principal normal

and binormal of α, and let κα, τα be the curvature and torsion of α.

Then α′ = T̃ which has length 1. So T = T̃ . Moreover,

καN = T ′ = T̃ ′ = κÑ.

we have κα = κ and N = Ñ . Since T̃ , Ñ , B̃ are positively oriented, we
conclude that

B = T ×N = T̃ × Ñ = B̃,

and
−ταN = B′ = B̃′ = −τÑ = −τN.

Hence τα = τ .
Uniqness: Let α, β as in the theorem. Let Tα, Nα, Bα be the unit

tangent, principal normal, binormal of α; and let Tβ, Nβ, Bβ be the unit
tangent, principal normal, binormal of β. Fix s0 ∈ (a, b). Let P be an
orthogonal matrix with determinant 1 such that Tβ(s0)

Nβ(s0)
Bβ(s0)

 =

 Tα(s0)
Nα(s0)
Bα(s0)

P.

Here Tα, . . . , etc are considered as row vectors. Let γ(s) = α(s)P . Let
Tγ, Nγ, Bγ be unit tangent, principal normal, binormal of γ. Then

Tγ = γ′ = α′P = TαP,

κNγ = T ′
γ = T ′

αP = κNP.

and so Tγ = TαP,Nγ = NαP . Hence Bγ = BαP . We have Tγ

Nγ

Bγ

′

=

 Tα

Nα

Bα

′

P = A

 Tα

Nα

Bα

P = A

 Tγ

Nγ

Bγ


where A is as above. Since Tγ(s0)

Nγ(s0)
Bγ(s0)

 =

 Tα(s0)
Nα(s0)
Bα(s0)

P =

 Tβ(s0)
Nβ(s0)
Bβ(s0)

 .

we have Tγ = Tβ, by uniqueness theorem of ODE. So γ(s) + c⃗ = β(s)
for some constant vector c⃗. That is: β(s) = α(s)P + c⃗ .

�
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5. Geometric meaning of curvature

Proposition 5.1. Let α(s) be a plane curve parametrized by arc length
defined on (a, b). Let s0 ∈ (a, b). Suppose κ(s0) > 0. Then the following
are true:

(i) For any s1 < s2 < s3 sufficiently close to s0, α(s1), α(s2), α(s3)
are not collinear.

(ii) For s1 < s2 < s3 sufficiently close to s0 so that α(s1), α(s2), α(s3)
are not collinear, let c(s1, s2, s3) be the center of the unique cir-
cle C(s1, s2, s3) passing through α(s1), α(s2), α(s3). As s1, s2, s3 →
s0, C(s1, s2, s3) will converge to a circle passing through α(s0)
tangent to α at α(s0) with radius 1/κ(s0)

Proof. (i) Suppose α(s1), α(s2), α(s3) lie on a straight line. Then

⟨α(si)− v⃗, n⃗⟩ = 0

for some constant vectors v⃗, n⃗ with |n⃗| = 1, for i = 1, 2, 3. Let f(s) =
⟨α(s)− v⃗, n⃗⟩. Then f(si) = 0 for i = 1, 2, 3. Hence f ′(ξ1) = f ′(ξ2) = 0
for some s1 < ξ1 < s2 < ξ2 < s3 and f ′′(η) = 0 for some ξ1 < η < ξ2.
That is: {

⟨α′(ξ1), n⃗⟩ = ⟨α′(ξ2), n⃗⟩ = 0;
⟨α′′(η), n⃗⟩ = 0.

As s1, s2, s3 → s0, n⃗ → N(s0) and α′′(η) = κ(s0)N(s0). This implies
κ(s0) = 0. Contradiction.

(ii) Let C(s1, s2, s3) be given by

||x− c|| = r.

where c = c(s1, s2, s3).
Let h(s) = ||α(s) − c||2. Then h(si) = r2 for i = 1, 2, 3. Hence

h′(ξ1) = h′(ξ2) = 0 for some s1 < ξ1 < s2 < ξ2 < s3 and h′′(η) = 0 for
some ξ1 < η < ξ2. Hence{

⟨α′(ξ1), α(ξ1)− c⟩ = ⟨α′(ξ2), α(ξ2)− c⟩ = 0;
⟨α′′(η), α(η)− c⟩+ 1 = 0.

If c → c∞ for some sequence s1 < s2 < s3 → s0, then

⟨α′(s0), α(s0)− c∞⟩ = 0, ⟨α′′(s0), α(s0)− c∞⟩ = −1

So c∞ − α(s0) =
1

κ(s0)
N(s0). From this the result follows.

�

The limiting circle is called the osculating circle.
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6. Curvature and torsion in general parameter

Proposition 6.1. Let α(t) be a regular curve with nonzero curvature.
Then the curvature and torsion are given by:{

κ = |α′×α′′|
|α′|3

τ = <α′×α′′,α′′′>
|α′×α′′|2 .

Here ′ always means differentiation with respect to t.

Proof. Let α(t) be a regular curve with nonzero curvature. Then

α′ = |α′|T,

(1) α′′ = κ|α′|2N + |α′|−1 < α′, α′′ > T.

Hence
< α′′, α′′ >= κ2|α′|4 + |α′|−2 < α′, α′′ >2,

and

κ2 =
< α′′, α′′ >< α′, α′ > − < α′, α′′ >2

|α′|6

=
|α′ × α′′|2

|α′|6
.

To compute τ , note that

α′′′ = κ(−kT + τB)|α′|3 + f(t)T + g(t)N

for some function f and g. (Why?). So

τ =
1

κ

< α′′′, B >

|α′|3
.

Use (1)

B = T ×N

=
T × α′′

k|α′|2

=
α′ × α′′

k|α′|3

Use the formula for k, we have

τ =
< α′ × α′′, α′′′ >

|α′ × α′′|2
.
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