1. Curves in \mathbb{R}^3

Definition 1.1. A (*parametrized smooth*) *curve* $\alpha(t)$ is a smooth map

$$
\alpha:I\subset\mathbb{R}\to\mathbb{R}^3
$$

from an interval *I* in \mathbb{R}^3 so that α is smooth. α is said to be *regular* if $\alpha' \neq 0$.

Let $\alpha : (a, b) \rightarrow \mathbb{R}^3$ is a curve. Let $f : (c, d) \rightarrow (a, b)$ with $t =$ *f*(σ) such that $f' > 0$, then $\alpha(f(\sigma)) : (c, d) \to \mathbb{R}^3$ is said to be a *reparametrization* of *α*.

Let α be a regular curve defined on [a, b] and let $t_0 \in [a, b]$, the *arc-length* is defined as:

$$
s(t) = \int_{t_0}^t |\alpha'(u)| du.
$$

If $s(a) = -L_1, s(b) = L_2$, then $\alpha(s) = \alpha(s(t))$ is a reparametrization of α and $\alpha(s)$ is said to be parametrized by arc-length.

Fact: $\alpha = \alpha(t)$ is parametrized by arc-length, that is *t* 'represents' arc-length from a fixed point iff $|\alpha'| = 1$.

2. **The Frenet formula**

Let $\alpha(s)$ be the regular curve parametrized by arc length. Let $\vec{T} = \alpha'$. Then

$$
k(s) := |T'|(s) \text{ (curvature)};
$$

\n
$$
N(s) := \frac{1}{k(s)} T'(s) \text{ (normal, if } k > 0);
$$

\n
$$
B(s) := T(s) \times N(s) \text{ (binormal, if } k > 0).
$$

Fact: $B' = -\tau N$, τ is called the torsion of α .

Theorem 2.1. *(Frenet formula) Let α be a regular curve with curvature* $k > 0$ *. Then*

$$
\left(\begin{array}{c} T \\ N \\ B \end{array}\right)' = \left(\begin{array}{ccc} 0 & k & 0 \\ -k & 0 & \tau \\ 0 & -\tau & 0 \end{array}\right) \left(\begin{array}{c} T \\ N \\ B \end{array}\right).
$$

We summarize some properties on curves:

Theorem 2.2. Let α be a regular curves in \mathbb{R}^3 parametrized by arc *length.*

- (i) *Suppose the curvature* $k \equiv 0$ *if and only if* α *is a straight line.*
- (ii) *Suppose the curvature* $k > 0$ *and the torsion* $\tau \equiv 0$ *if and only if α is a plane curve.*
- (iii) *Suppose the curvature* $k = k_0 > 0$ *is a constant and* $\tau \equiv 0$ *, then* α *is a circular arc with radius* $1/k_0$.
- (iv) *Suppose the curvature* $k > 0$ *and the torsion* $\tau \neq 0$ *everywhere. α lies on s sphere if and only if* $\rho^2 + (\rho')^2 \lambda^2 = constant$, where $\rho = 1/k$ *and* $\lambda = 1/\tau$.
- (v) *Suppose the curvature* $k = k_0 > 0$ *is a constant and* $\tau = \tau_0$ *is a constant. Then α is a circular helix.*
- (vi) *Suppose* α *is defined on* [a, b]*. Let* $\mathbf{p} = \alpha(a)$ *and* $\mathbf{q} = \alpha(b)$ *. Then the length l of* α *satisfies* $l \leq |\mathbf{p} - \mathbf{q}|$ *. Moreover, equality holds if and only if* α *is the straight line from* **p** *to* **q**.

3. **Review: Existence and uniqueness thoerems in ODE**

Ref: *Ordinary differential equations, Birkoff and Rota*

We only consider the special case of linear ODE. Let $A(t) = (a_{ij}(t))_{n \times n}$ be a smooth family $n \times n$ matrix, $t \in [a, b]$. Consider the following initial valued problem (IVP): Given *A* and a constant $\mathbf{x}_0 \in \mathbb{R}^n$, to find $\mathbf{x} : [a, b] \to \mathbb{R}^n$ satisfying:

$$
\begin{cases} \mathbf{x}'(t) = A(t)\mathbf{x}(t), & t \in [a, b]; \\ \mathbf{x}(a) = \mathbf{x}_0. \end{cases}
$$

Theorem 3.1. *Given any* $\mathbf{x}_0 \in \mathbb{R}^n$, *the exists a unique solution of the above IVP.*

Proof. (Sketch) For simplicity let us assume $a = 0$.

Existence: Define inductively, with $\mathbf{x}_0(t) = \mathbf{x}_0$ for all *t*, and

$$
\mathbf{x}_{k+1}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_k(\tau) d\tau.
$$

for $k \ge 0$. Let $M = \sup_{t \in [a,b]} ||A||(t)$ and $||A(t)||^2 = \text{tr}(AA^T(t))$. For $k \geq 1$, we have

$$
|\mathbf{x}_{k+1}(t)-\mathbf{x}_k(t)| \leq M \int_0^t |\mathbf{x}_k(\tau)-\mathbf{x}_{k-1}(\tau)| d\tau.
$$

Inductively, we have (why?)

$$
|\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \le M^k \int_0^t \int_0^{\tau_{k-1}} \dots \int_0^{\tau_2} \int_0^{\tau_1} |\mathbf{x}_1(\tau_1) - \mathbf{x}_0(\tau_1)| d\tau_1 d\tau_2 \dots d\tau_{k-1} d\tau_k
$$

$$
\le \frac{M^k b^k S}{k!}
$$

where integration is over the domain $t \geq \tau_k \geq \cdots \geq \tau_1$ and $S =$ $\sup_{t\in[0,b]}|\mathbf{x}_1(t)-\mathbf{x}_0(t)|.$

2

Hence $\sum_{k=1}^{\infty} |\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \leq C$ for some constant *C* for all $t \in$ [0*, b*]. This implies that $\mathbf{x}_k \to \mathbf{x}_\infty$ uniformly on [0*, b*] which satisfies:

$$
\mathbf{x}_{\infty}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_{\infty}(\tau) d\tau,
$$

(why?) Now \mathbf{x}_{∞} is the solution of the above IVP.

Uniquess: Sufficient to prove that if $x_0 = 0$, then any solution must be trivial. So let **x** be such a solution, then

$$
\frac{d}{dt}||\mathbf{x}||^2 = 2\langle A\mathbf{x}, \mathbf{x}\rangle \le 2M||\mathbf{x}||^2.
$$

Hence

$$
\frac{d}{dt}\left(\exp(-2Mt)||\mathbf{x}||^2\right) \le 0.
$$

This will imply that $||\mathbf{x}||^2 \equiv 0$. (Why?)

4. **Fundamental theorem of the local theorey of curves**

Theorem 4.1. *Let* $\kappa(s) > 0$ *and* $\tau(s)$ *be smooth function on* (a, b) *. There exists a regular curve* $\alpha : (a, b) \to \mathbb{R}^3$ *with* $|\alpha'| = 1$ *, such that the curvature and torsion of* α *are* k *,* τ *respectively.*

Moreover, α *is unique in the sense that if* β *is another curve satisfying the above conditions, then* $\beta(s) = \alpha(s)P + \vec{c}$ *for some constant orthogonal matrix P and some constant vector* \vec{c} *. Here* α, β are con**sidered as row vectors.**

Proof. (**Existence**): Let

$$
A(s) = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix}.
$$

Let $X(s)$ be the 3×3 matrix and fix s_0 which is the solution of:

$$
\begin{cases}\nX' &= AX \text{ in } (a, b); \\
X(s_0) &= I.\n\end{cases}
$$

The solution exists by a theorem in ODE. We claim that *X* is orthogonal with determinant 1. In fact

$$
(XtX)' = (Xt)'X + XtX' = (AX)tX + XtAX = XtAtX + XtAX = 0
$$

because $A^t = -A$. Hence $X^t X = I$ because $X^t(s_0)X(s_0) = I$. (Using $(XX^t)'$ may be more involved.) Hence $X(s)$ is orthogonal. Since

det *X*(*s*) = 1 or −1 and initially, det *X*(*s*₀) = 1, we have det *X*(*s*) = 1. Write

$$
X = \left(\begin{array}{c} \overline{T} \\ \widetilde{N} \\ \widetilde{B} \end{array}\right).
$$

Define $\alpha(s) = \int_{s_0}^{s} \widetilde{T}(\sigma) d\sigma$. Let *T*, *N*, *B* be the tangent, principal normal and binormal of α , and let $\kappa_{\alpha}, \tau_{\alpha}$ be the curvature and torsion of α . Then $\alpha' = T$ which has length 1. So $T = T$. Moreover,

$$
\kappa_{\alpha} N = T' = \widetilde{T}' = \kappa \widetilde{N}.
$$

we have $\kappa_{\alpha} = \kappa$ and $N = N$. Since *T*, *N*, *B* are positively oriented, we conclude that

$$
B = T \times N = T \times N = B,
$$

and

$$
-\tau_{\alpha}N = B' = \widetilde{B}' = -\tau \widetilde{N} = -\tau N.
$$

Hence $\tau_{\alpha} = \tau$.

Uniqness: Let α, β as in the theorem. Let $T_{\alpha}, N_{\alpha}, B_{\alpha}$ be the unit tangent, principal normal, binormal of α ; and let T_{β} , N_{β} , B_{β} be the unit tangent, principal normal, binormal of β . Fix $s_0 \in (a, b)$. Let P be an orthogonal matrix with determinant 1 such that

$$
\begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} P.
$$

Here T_{α}, \ldots , etc are considered as row vectors. Let $\gamma(s) = \alpha(s)P$. Let *T*_{*γ*}, *N*_{*γ*}, *B*_{*γ*} be unit tangent, principal normal, binormal of *γ*. Then

$$
T_{\gamma} = \gamma' = \alpha' P = T_{\alpha} P,
$$

$$
\kappa N_{\gamma} = T'_{\gamma} = T'_{\alpha} P = \kappa N P.
$$

and so $T_{\gamma} = T_{\alpha}P, N_{\gamma} = N_{\alpha}P$. Hence $B_{\gamma} = B_{\alpha}P$. We have

$$
\left(\begin{array}{c} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{array}\right)' = \left(\begin{array}{c} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{array}\right)' P = A \left(\begin{array}{c} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{array}\right) P = A \left(\begin{array}{c} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{array}\right)
$$

where *A* is as above. Since

$$
\left(\begin{array}{c}T_{\gamma}(s_0)\\N_{\gamma}(s_0)\\B_{\gamma}(s_0)\end{array}\right)=\left(\begin{array}{c}T_{\alpha}(s_0)\\N_{\alpha}(s_0)\\B_{\alpha}(s_0)\end{array}\right)P=\left(\begin{array}{c}T_{\beta}(s_0)\\N_{\beta}(s_0)\\B_{\beta}(s_0)\end{array}\right).
$$

we have $T_{\gamma} = T_{\beta}$, by uniqueness theorem of ODE. So $\gamma(s) + \vec{c} = \beta(s)$ for some constant vector \vec{c} . That is: $\beta(s) = \alpha(s)P + \vec{c}$.

 \Box

5. Geometric meaning of curvature

Proposition 5.1. *Let* $\alpha(s)$ *be a plane curve parametrized by arc length defined on* (a, b) *. Let* $s_0 \in (a, b)$ *. Suppose* $\kappa(s_0) > 0$ *. Then the following are true:*

- (i) *For any* $s_1 < s_2 < s_3$ *sufficiently close to* s_0 , $\alpha(s_1)$, $\alpha(s_2)$, $\alpha(s_3)$ *are not collinear.*
- (ii) *For* $s_1 < s_2 < s_3$ *sufficiently close to* s_0 *so that* $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ are not collinear, let $c(s_1, s_2, s_3)$ be the center of the unique cir $cle C(s_1, s_2, s_3)$ *passing through* $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ *. As* $s_1, s_2, s_3 \rightarrow$ *s*₀*,* $C(s_1, s_2, s_3)$ *will converge to a circle passing through* $\alpha(s_0)$ *tangent to* α *at* $\alpha(s_0)$ *with radius* $1/\kappa(s_0)$

Proof. (i) Suppose $\alpha(s_1)$, $\alpha(s_2)$, $\alpha(s_3)$ lie on a straight line. Then

$$
\langle \alpha(s_i) - \vec{v}, \vec{n} \rangle = 0
$$

for some constant vectors \vec{v}, \vec{n} with $|\vec{n}| = 1$, for $i = 1, 2, 3$. Let $f(s) =$ $\langle \alpha(s) - \vec{v}, \vec{n} \rangle$. Then $f(s_i) = 0$ for $i = 1, 2, 3$. Hence $f'(\xi_1) = f'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $f''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. That is:

$$
\begin{cases} \langle \alpha'(\xi_1), \vec{n} \rangle = \langle \alpha'(\xi_2), \vec{n} \rangle = 0; \\ \langle \alpha''(\eta), \vec{n} \rangle = 0. \end{cases}
$$

As $s_1, s_2, s_3 \rightarrow s_0, \vec{n} \rightarrow N(s_0)$ and $\alpha''(\eta) = \kappa(s_0)N(s_0)$. This implies $\kappa(s_0) = 0$. Contradiction.

(ii) Let $C(s_1, s_2, s_3)$ be given by

$$
||\mathbf{x} - c|| = r.
$$

where $c = c(s_1, s_2, s_3)$.

Let $h(s) = ||\alpha(s) - c||^2$. Then $h(s_i) = r^2$ for $i = 1, 2, 3$. Hence $h'(\xi_1) = h'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $h''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. Hence

$$
\begin{cases} \langle \alpha'(\xi_1), \alpha(\xi_1) - c \rangle &= \langle \alpha'(\xi_2), \alpha(\xi_2) - c \rangle = 0; \\ \langle \alpha''(\eta), \alpha(\eta) - c \rangle + 1 &= 0. \end{cases}
$$

If $c \to c_{\infty}$ for some sequence $s_1 < s_2 < s_3 \to s_0$, then

$$
\langle \alpha'(s_0), \alpha(s_0) - c_{\infty} \rangle = 0, \quad \langle \alpha''(s_0), \alpha(s_0) - c_{\infty} \rangle = -1
$$

So $c_{\infty} - \alpha(s_0) = \frac{1}{\kappa(s_0)} N(s_0)$. From this the result follows.

 \Box

The limiting circle is called the *osculating circle*.

6. Curvature and torsion in general parameter

Proposition 6.1. *Let* $\alpha(t)$ *be a regular curve with nonzero curvature. Then the curvature and torsion are given by:*

$$
\left\{ \begin{array}{ll} \kappa = & \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} \\ \tau = & \frac{<\alpha' \times \alpha'', \alpha'''>}{|\alpha' \times \alpha''|^2}. \end{array} \right.
$$

Here ′ always means differentiation with respect to t.

Proof. Let $\alpha(t)$ be a regular curve with nonzero curvature. Then

$$
\alpha' = |\alpha'|T,
$$

(1)
$$
\alpha'' = \kappa |\alpha'|^2 N + |\alpha'|^{-1} < \alpha', \alpha'' > T.
$$

Hence

$$
<\alpha'', \alpha''> = \kappa^2 |\alpha'|^4 + |\alpha'|^{-2} < \alpha', \alpha''>^2,
$$

and

$$
\kappa^2 = \frac{<\alpha'', \alpha''><\alpha', \alpha'>-<\alpha', \alpha''>^2}{|\alpha'|^6}
$$

$$
= \frac{|\alpha' \times \alpha''|^2}{|\alpha'|^6}.
$$

To compute τ , note that

$$
\alpha''' = \kappa(-kT + \tau B)|\alpha'|^3 + f(t)T + g(t)N
$$

for some function *f* and *g*. (Why?). So

$$
\tau = \frac{1}{\kappa} \frac{<\alpha''', B>}{|\alpha'|^3}.
$$

Use (1)

$$
B = T \times N
$$

$$
= \frac{T \times \alpha''}{k|\alpha'|^2}
$$

$$
= \frac{\alpha' \times \alpha''}{k|\alpha'|^3}
$$

Use the formula for *k*, we have

$$
\tau = \frac{<\alpha'\times\alpha'',\alpha'''}{|\alpha'\times\alpha''|^2}.
$$

