1. Curves in \mathbb{R}^3

Definition 1.1. A (parametrized smooth) curve $\alpha(t)$ is a smooth map $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$

from an interval I in \mathbb{R} into \mathbb{R}^3 so that α is smooth. α is said to be regular if $\alpha' \neq 0$.

Let $\alpha : (a,b) \to \mathbb{R}^3$ is a curve. Let $f : (c,d) \to (a,b)$ with $t = f(\sigma)$ such that f' > 0, then $\alpha(f(\sigma)) : (c,d) \to \mathbb{R}^3$ is said to be a reparametrization of α .

Let α be a regular curve defined on [a, b] and let $t_0 \in [a, b]$, the *arc-length* is defined as:

$$s(t) = \int_{t_0}^t |\alpha'(u)| du.$$

If $s(a) = -L_1$, $s(b) = L_2$, then $\alpha(s) = \alpha(s(t))$ is a reparametrization of α and $\alpha(s)$ is said to be parametrized by arc-length.

Fact: $\alpha = \alpha(t)$ is parametrized by arc-length, that is t 'represents' arc-length from a fixed point iff $|\alpha'| = 1$.

2. The Frenet formula

Let $\alpha(s)$ be the regular curve parametrized by arc length. Let $\vec{T} = \alpha'$. Then

$$k(s) := |T'|(s) \text{ (curvature)};$$

$$N(s) := \frac{1}{k(s)}T'(s) \text{ (normal, if } k > 0);$$

$$B(s) := T(s) \times N(s) \text{ (binormal, if } k > 0).$$

Fact: $B' = -\tau N$, τ is called the torsion of α .

Theorem 2.1. (Frenet formula) Let α be a regular curve with curvature k > 0. Then

$$\begin{pmatrix} T\\N\\B \end{pmatrix}' = \begin{pmatrix} 0 & k & 0\\-k & 0 & \tau\\0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T\\N\\B \end{pmatrix}.$$

We summarize some properties on curves:

Theorem 2.2. Let α be a regular curves in \mathbb{R}^3 parametrized by arc length.

- (i) Suppose the curvature $k \equiv 0$ if and only if α is a straight line.
- (ii) Suppose the curvature k > 0 and the torsion $\tau \equiv 0$ if and only if α is a plane curve.

- (iii) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau \equiv 0$, then α is a circular arc with radius $1/k_0$.
- (iv) Suppose the curvature k > 0 and the torsion $\tau \neq 0$ everywhere. α lies on s sphere if and only if $\rho^2 + (\rho')^2 \lambda^2 = constant$, where $\rho = 1/k$ and $\lambda = 1/\tau$.
- (v) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau = \tau_0$ is a constant. Then α is a circular helix.
- (vi) Suppose α is defined on [a, b]. Let $\mathbf{p} = \alpha(a)$ and $\mathbf{q} = \alpha(b)$. Then the length l of α satisfies $l \leq |\mathbf{p} - \mathbf{q}|$. Moreover, equality holds if and only if α is the straight line from \mathbf{p} to \mathbf{q} .

3. Review: Existence and uniqueness theorems in ODE

Ref: Ordinary differential equations, Birkoff and Rota

We only consider the special case of linear ODE. Let $A(t) = (a_{ij}(t))_{n \times n}$ be a smooth family $n \times n$ matrix, $t \in [a, b]$. Consider the following initial valued problem (IVP): Given A and a constant $\mathbf{x}_0 \in \mathbb{R}^n$, to find $\mathbf{x} : [a, b] \to \mathbb{R}^n$ satisfying:

$$\left\{ \begin{array}{ll} \mathbf{x}'(t) &= A(t)\mathbf{x}(t), \ t \in [a,b]; \\ \mathbf{x}(a) &= \mathbf{x}_0. \end{array} \right.$$

Theorem 3.1. Given any $\mathbf{x}_0 \in \mathbb{R}^n$, the exists a unique solution of the above *IVP*.

Proof. (Sketch) For simplicity let us assume a = 0.

Existence: Define inductively, with $\mathbf{x}_0(t) = \mathbf{x}_0$ for all t, and

$$\mathbf{x}_{k+1}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_k(\tau) d\tau.$$

for $k \ge 0$. Let $M = \sup_{t \in [a,b]} ||A||(t)$ and $||A(t)||^2 = tr(AA^T(t))$. For $k \ge 1$, we have

$$|\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \le M \int_0^t |\mathbf{x}_k(\tau) - \mathbf{x}_{k-1}(\tau)| d\tau.$$

Inductively, we have (why?)

$$\begin{aligned} |\mathbf{x}_{k+1}(t) - \mathbf{x}_{k}(t)| &\leq M^{k} \int_{0}^{t} \int_{0}^{\tau_{k-1}} \dots \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} |\mathbf{x}_{1}(\tau_{1}) - \mathbf{x}_{0}(\tau_{1})| d\tau_{1} d\tau_{2} \dots d\tau_{k-1} d\tau_{k} \\ &\leq \frac{M^{k} b^{k} S}{k!} \end{aligned}$$

where integration is over the domain $t \ge \tau_k \ge \cdots \ge \tau_1$ and $S = \sup_{t \in [0,b]} |\mathbf{x}_1(t) - \mathbf{x}_0(t)|$.

 $\mathbf{2}$

Hence $\sum_{k=1}^{\infty} |\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \leq C$ for some constant C for all $t \in [0, b]$. This implies that $\mathbf{x}_k \to \mathbf{x}_{\infty}$ uniformly on [0, b] which satisfies:

$$\mathbf{x}_{\infty}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_{\infty}(\tau) d\tau,$$

(why?) Now \mathbf{x}_{∞} is the solution of the above IVP.

Uniquess: Sufficient to prove that if $\mathbf{x}_0 = \mathbf{0}$, then any solution must be trivial. So let \mathbf{x} be such a solution, then

$$\frac{d}{dt}||\mathbf{x}||^2 = 2\langle A\mathbf{x}, \mathbf{x} \rangle \le 2M||\mathbf{x}||^2.$$

Hence

$$\frac{d}{dt}\left(\exp(-2Mt)||\mathbf{x}||^2\right) \le 0.$$

This will imply that $||\mathbf{x}||^2 \equiv 0$. (Why?)

4. Fundamental theorem of the local theorey of curves

Theorem 4.1. Let $\kappa(s) > 0$ and $\tau(s)$ be smooth function on (a, b). There exists a regular curve $\alpha : (a, b) \to \mathbb{R}^3$ with $|\alpha'| = 1$, such that the curvature and torsion of α are k, τ respectively.

Moreover, α is unique in the sense that if β is another curve satisfying the above conditions, then $\beta(s) = \alpha(s)P + \vec{c}$ for some constant orthogonal matrix P and some constant vector \vec{c} . Here α, β are considered as row vectors.

Proof. (Existence): Let

$$A(s) = \begin{pmatrix} 0 & \kappa(s) & 0\\ -\kappa(s) & 0 & \tau(s)\\ 0 & -\tau(s) & 0 \end{pmatrix}.$$

Let X(s) be the 3 \times 3 matrix and fix s_0 which is the solution of:

$$\begin{cases} X' = AX \text{ in } (a,b); \\ X(s_0) = I. \end{cases}$$

The solution exists by a theorem in ODE. We claim that X is orthogonal with determinant 1. In fact

$$(X^{t}X)' = (X^{t})'X + X^{t}X' = (AX)^{t}X + X^{t}AX = X^{t}A^{t}X + X^{t}AX = 0$$

because $A^t = -A$. Hence $X^t X = I$ because $X^t(s_0)X(s_0) = I$. (Using $(XX^t)'$ may be more involved.) Hence X(s) is orthogonal. Since

det X(s) = 1 or -1 and initially, det $X(s_0) = 1$, we have det X(s) = 1. Write

$$X = \left(\begin{array}{c} \widetilde{T} \\ \widetilde{N} \\ \widetilde{B} \end{array}\right)$$

Define $\alpha(s) = \int_{s_0}^s \widetilde{T}(\sigma) d\sigma$. Let T, N, B be the tangent, principal normal and binormal of α , and let $\kappa_{\alpha}, \tau_{\alpha}$ be the curvature and torsion of α . Then $\alpha' = \widetilde{T}$ which has length 1. So $T = \widetilde{T}$. Moreover,

$$\kappa_{\alpha}N = T' = \widetilde{T}' = \kappa \widetilde{N}.$$

we have $\kappa_{\alpha} = \kappa$ and $N = \widetilde{N}$. Since $\widetilde{T}, \widetilde{N}, \widetilde{B}$ are positively oriented, we conclude that

$$B = T \times N = T \times N = B,$$

and

$$-\tau_{\alpha}N = B' = \widetilde{B}' = -\tau\widetilde{N} = -\tau N.$$

Hence $\tau_{\alpha} = \tau$.

Uniquess: Let α, β as in the theorem. Let $T_{\alpha}, N_{\alpha}, B_{\alpha}$ be the unit tangent, principal normal, binormal of α ; and let $T_{\beta}, N_{\beta}, B_{\beta}$ be the unit tangent, principal normal, binormal of β . Fix $s_0 \in (a, b)$. Let P be an orthogonal matrix with determinant 1 such that

$$\begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} P.$$

Here T_{α}, \ldots , etc are considered as row vectors. Let $\gamma(s) = \alpha(s)P$. Let $T_{\gamma}, N_{\gamma}, B_{\gamma}$ be unit tangent, principal normal, binormal of γ . Then

$$T_{\gamma} = \gamma' = \alpha' P = T_{\alpha} P,$$

$$zN_{\gamma} = T'_{\gamma} = T'_{\alpha} P = \kappa N H$$

 $\kappa N_{\gamma} = T'_{\gamma} = T'_{\alpha}P = \kappa NP.$ and so $T_{\gamma} = T_{\alpha}P, N_{\gamma} = N_{\alpha}P$. Hence $B_{\gamma} = B_{\alpha}P$. We have

$$\begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}' = \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix}' P = A \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix} P = A \begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}$$

where A is as above. Since

$$\begin{pmatrix} T_{\gamma}(s_0)\\N_{\gamma}(s_0)\\B_{\gamma}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0)\\N_{\alpha}(s_0)\\B_{\alpha}(s_0) \end{pmatrix} P = \begin{pmatrix} T_{\beta}(s_0)\\N_{\beta}(s_0)\\B_{\beta}(s_0) \end{pmatrix}$$

we have $T_{\gamma} = T_{\beta}$, by uniqueness theorem of ODE. So $\gamma(s) + \vec{c} = \beta(s)$ for some constant vector \vec{c} . That is: $\beta(s) = \alpha(s)P + \vec{c}$.

5. Geometric meaning of curvature

Proposition 5.1. Let $\alpha(s)$ be a plane curve parametrized by arc length defined on (a, b). Let $s_0 \in (a, b)$. Suppose $\kappa(s_0) > 0$. Then the following are true:

- (i) For any $s_1 < s_2 < s_3$ sufficiently close to s_0 , $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ are not collinear.
- (ii) For s₁ < s₂ < s₃ sufficiently close to s₀ so that α(s₁), α(s₂), α(s₃) are not collinear, let c(s₁, s₂, s₃) be the center of the unique circle C(s₁, s₂, s₃) passing through α(s₁), α(s₂), α(s₃). As s₁, s₂, s₃ → s₀, C(s₁, s₂, s₃) will converge to a circle passing through α(s₀) tangent to α at α(s₀) with radius 1/κ(s₀)

Proof. (i) Suppose $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ lie on a straight line. Then

$$\langle \alpha(s_i) - \vec{v}, \vec{n} \rangle = 0$$

for some constant vectors \vec{v}, \vec{n} with $|\vec{n}| = 1$, for i = 1, 2, 3. Let $f(s) = \langle \alpha(s) - \vec{v}, \vec{n} \rangle$. Then $f(s_i) = 0$ for i = 1, 2, 3. Hence $f'(\xi_1) = f'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $f''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. That is:

$$\begin{cases} \langle \alpha'(\xi_1), \vec{n} \rangle = \langle \alpha'(\xi_2), \vec{n} \rangle = 0; \\ \langle \alpha''(\eta), \vec{n} \rangle = 0. \end{cases}$$

As $s_1, s_2, s_3 \to s_0$, $\vec{n} \to N(s_0)$ and $\alpha''(\eta) = \kappa(s_0)N(s_0)$. This implies $\kappa(s_0) = 0$. Contradiction.

(ii) Let $C(s_1, s_2, s_3)$ be given by

$$||\mathbf{x} - c|| = r.$$

where $c = c(s_1, s_2, s_3)$.

Let $h(s) = ||\alpha(s) - c||^2$. Then $h(s_i) = r^2$ for i = 1, 2, 3. Hence $h'(\xi_1) = h'(\xi_2) = 0$ for some $s_1 < \xi_1 < s_2 < \xi_2 < s_3$ and $h''(\eta) = 0$ for some $\xi_1 < \eta < \xi_2$. Hence

$$\begin{cases} \langle \alpha'(\xi_1), \alpha(\xi_1) - c \rangle &= \langle \alpha'(\xi_2), \alpha(\xi_2) - c \rangle = 0; \\ \langle \alpha''(\eta), \alpha(\eta) - c \rangle + 1 &= 0. \end{cases}$$

If $c \to c_{\infty}$ for some sequence $s_1 < s_2 < s_3 \to s_0$, then

$$\langle \alpha'(s_0), \alpha(s_0) - c_{\infty} \rangle = 0, \quad \langle \alpha''(s_0), \alpha(s_0) - c_{\infty} \rangle = -1$$

So $c_{\infty} - \alpha(s_0) = \frac{1}{\kappa(s_0)} N(s_0)$. From this the result follows.

The limiting circle is called the *osculating circle*.

6. CURVATURE AND TORSION IN GENERAL PARAMETER

Proposition 6.1. Let $\alpha(t)$ be a regular curve with nonzero curvature. Then the curvature and torsion are given by:

$$\left\{ \begin{array}{ll} \kappa = & \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} \\ \tau = & \frac{<\alpha' \times \alpha'', \alpha'''>}{|\alpha' \times \alpha''|^2}. \end{array} \right.$$

Here ' always means differentiation with respect to t.

Proof. Let $\alpha(t)$ be a regular curve with nonzero curvature. Then

$$\alpha' = |\alpha'|T,$$

(1)
$$\alpha'' = \kappa |\alpha'|^2 N + |\alpha'|^{-1} < \alpha', \alpha'' > T.$$

Hence

$$< \alpha'', \alpha'' > = \kappa^2 |\alpha'|^4 + |\alpha'|^{-2} < \alpha', \alpha'' >^2,$$

and

$$\kappa^{2} = \frac{\langle \alpha'', \alpha'' \rangle \langle \alpha', \alpha' \rangle - \langle \alpha', \alpha'' \rangle^{2}}{|\alpha'|^{6}}$$
$$= \frac{|\alpha' \times \alpha''|^{2}}{|\alpha'|^{6}}.$$

To compute τ , note that

$$\alpha''' = \kappa(-kT + \tau B)|\alpha'|^3 + f(t)T + g(t)N$$

for some function f and g. (Why?). So

$$\tau = \frac{1}{\kappa} \frac{<\alpha^{\prime\prime\prime}, B>}{|\alpha^\prime|^3}$$

Use (1)

$$B = T \times N$$
$$= \frac{T \times \alpha''}{k |\alpha'|^2}$$
$$= \frac{\alpha' \times \alpha''}{k |\alpha'|^3}$$

Use the formula for k, we have

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{|\alpha' \times \alpha''|^2}.$$