
MAT 4030: DIFFERENTIAL GEOMETRY
Midterm examination, Oct. 20, 2020

Show all steps clearly in your working. NO point will be given if
sufficient justification is not provided.

Answer all EIGHT questions.

(1) Let α(t) = (at, bt2, t3) where a, b are nonzero constants.
Find τ

κ
. Show that it is a constant if 4b4 = 9a2.

(Hint: You may use the formula for κ, τ for curves with gen-
eral parametrization:

κ =
|α′ × α′′|
|α′|3

; τ = −〈α
′ × α′′, α′′′〉
|α′ × α′′|2

.

)

Sol:

α′ = (a, 2bt, 3t2)

α′′ = (0, 2b, 6t)

α′′′ = (0, 0, 6)

α′ × α′′ = (6bt2,−6at, 2ab).

Then

τ

κ
=− 〈α

′ × α′′, α′′′〉|α′|3

|α′ × α′′|3

=− 12ab× (a2 + 4b2t2 + 9t4)
3
2

(36b2t4 + 36a2t2 + 4a2b2)
3
2

.

.

If 4b4 = 9a2, then

b2a−2(36b2t4 + 36a2t2 + 4a2b2) =81t4 + 36b2t2 + 9a2

=9(9t4 + 4b2t2 + a2).
.

So it is a constant.
Note: Conversely, if it is a constant, then

a2 + 4b2t2 + 9t4 = C(9b2t4 + 9a2t2 + a2b2)

for some constant C. Then

a2 = Ca2b2, 4b2 = 9Ca2, 9 = 9Cb2.

So C = b−2 and 4b4 = 9a2.
1
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(2) Consider the Möbius strip:

X(θ, v) = a(θ) + vw(θ)

−π < θ < π, −1
2
< v < 1

2
, where{

a(θ) = (cos θ, sin θ, 0);
w(θ) = (sin 1

2
θ cos θ, sin 1

2
θ sin θ, cos 1

2
θ).

Prove that if Xθ = λw, then λ = 0. (Note that |w| = 1). Are
Xθ,Xv linearly independent?

Sol: (a) Since |w| = 1, if Xθ = λw, we have

λ =< λw,w >

=< Xθ,w >

=< a
′
+ vw

′
,w >

=< a
′
,w > +v < w

′
,w >

= 0

(b) aXθ + bXv = 0⇔ aXθ + bw = 0.
If a = 0, then bw = 0. Since w 6= 0, we have b = 0.
If a 6= 0, then

Xθ = − b
a
w.

Then by the result in (a), we have b = 0. Thus aXθ = 0.
[Next we show that Xθ 6= 0.
If Xθ = 0, then

(− sin θ, cos θ, 0)+v(
1

2
cos

1

2
θ cos θ− sin

1

2
θ sin θ,

1

2
cos

1

2
θ sin θ+

sin
1

2
θ cos θ,−1

2
sin

1

2
θ) = 0.

Thus

v sin
1

2
θ = 0.

If v = 0, then (− sin θ, cos θ, 0) = 0, this is a contradiction.

If sin
1

2
θ = 0, then θ = 0 since −π < θ < π. So

(0, 1, 0) + v(
1

2
, 0, 0) = 0.

This is also a contradiction. So Xθ 6= 0.]
Thus a = 0.
So

aXθ + bXv = 0⇔ a = b = 0,

which means {Xθ,Xv} is linearly independent.
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(3) Consider the surface given by {z = xy}. Parametrized the
surface by

X(u, v) = (u, v, uv).

(a) Find the coefficients of the first and second fundamental
form with respect to this parametrization.

(b) Find the matrix of the shape operator S with respect to
N and with respect to the ordered basis Xu,Xv.

(c) Find the Gaussian curvature and mean curvature of the
surface.

Sol:

Xu = (1, 0, v),Xv = (0, 1, u)

Xuu = (0, 0, 0),Xuv = (0, 0, 1),Xvv = (0, 0, 0)

So

N = (1 + u2 + v2)−
1
2 (−v,−u, 1).

(a)

E = 1 + v2, F = uv,G = 1 + u2,

e = 0, f = (1 + u2 + v2)−
1
2 , g = 0.

(b) The matrix is(
e f
f g

)(
E F
F G

)−1
=

1

EG− F 2

(
e f
f g

)(
G −F
−F E

)
So the matrix is

(1 + u2 + v2)−
3
2

(
−uv 1 + v2

1 + u2 −uv

)
K = − 1

[1 + u2 + v2]2
,

H = − uv

[1 + u2 + v2]
3
2

.

(4) Let α(s) = (x(s), y(s)) be a regular curve in R2 parametrized
by arc length with unit tangent t = α′. Define the normal n
so that {t,n} are positively oriented. Define the curvature κ to
be the value so that t′ = κn.

Find the curvature of a circle with radius r under the follow-
ing two parametrizations:

(i) α(s) = (r cos s
r
, r sin s

r
);

(ii) β(s) = (r cos(− s
r
), r sin(− s

r
)).
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Sol: α
′
(s) = (x

′
(s), y

′
(s)).

Since {t,n} is positively oriented and α(s) is parametrized by
arc length, we have

n = (−y′
(s), x

′
(s)).

Thus

κ =< κn,n >=< t′,n >

(i) α(s) = (r cos s
r
, r sin s

r
). Then

α
′
(s) = (− sin

s

r
, cos

s

r
).

So α(s) is parametrized by arc length, then

κ =< t′,n >

=< (−1

r
cos

s

r
,−1

r
sin

s

r
), (− cos

s

r
,− sin

s

r
) >

=
1

r

(ii) β(s) = (r cos(− s
r
), r sin(− s

r
)). Then

β
′
(s) = (− sin

s

r
,− cos

s

r
).

So β(s) is parametrized by arc length, then

κ =< t′,n >

=< (−1

r
cos

s

r
,
1

r
sin

s

r
), (cos

s

r
,− sin

s

r
) >

= −1

r

(5) Let M be a regular surface and p ∈ M . Suppose M touches a
sphere S2(R) of radius R at p (i.e. the tangent planes coincide
at p). Suppose M is contained in the interior of S2(R). With
the unit normal N pointing insider the sphere. Show that each
principal curvature of M at p is at least 1

R
.

What can you say the mean curvature and Gaussian curva-
ture of M at p?

What can you say if M is in the exterior of S2(R)?
(Hint: You may assume that p = (0, 0, 0), the tangent plane

is the xy-plane and N = (0, 0, 1) at p.)



5

Sol: Near p, M is given by the graph of function (with princi-
pal curvatures k1, k2 with principal direction (1, 0, 0), (0, 1, 0)):

p(x, y) = k1x
2 + k2y

2 + o(x2 + y2),

and the sphere is given by the graph of the function

q(x, y) =
1

R
(x2 + k2y

2) + o(x2 + y2).

Since M is insider the sphere, in this settings, we have must
have p ≥ q. So

(k1 −
1

R
)x2 + (k2 −

1

R
)y2 + o(x2 + y2) ≥ 0

near (0, 0). Hence ki ≥ 1
R

.

Mean curvature H ≥ 1
R

and Gaussian curvature K ≥ 1
R2 .

If M is outside the sphere, then w.r.t. the unit normal N as
above, the principal curvatures are ≤ 1

R
, the mean curvature

H ≤ 1
R

. But we cannot say too much about the Gaussian
curvature. It may be very large. (Consider a very small sphere
outside the sphere and touches the sphere.)

Another proof:
(a) Let ~v ∈ TpM be a unit vector. Let α(s) ⊂ M be a smooth
curve parametrized by arc length such that

α(0) = p, α
′
(0) = ~v.

Let q = (0, 0, R), so by the assumption,

f(s) = |α(s)− q|2

has a local maximum at s = 0. Then f
′′ ≤ 0, which is

< α
′
(0), α

′
(0) > + < α(0)− q, α′′

(0) >≤ 0

1+ < −R ~N(p), α
′′
(0) >≤ 0

< ~N(p), α
′′
(0) >≥ 1

R

< − d

ds

∣∣∣
s=0

~N(α(s)), α
′
(0) >≥ 1

R

< Sp(~v), ~v >≥ 1

R
for any unit vector ~v ∈ TpM .
Let {~v1, ~v2} be an orthonormal basis of TpM and {k1, k2} be
the principle curvatures such that

Sp(~v1) = k1~v1, Sp(~v2) = k2~v2.
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Then by the previous result

k1 =< Sp(~v1), ~v1 >≥
1

R

k2 =< Sp(~v2), ~v2 >≥
1

R
.

(b) Since by (a),

k1 =< Sp(~v1), ~v1 >≥
1

R

k2 =< Sp(~v2), ~v2 >≥
1

R
.

We have

H(p) =
1

2
(k1 + k2) ≥

1

R

K(p) = k1k2 ≥
1

R2

(c) If we assume ~N(p) = (0, 0, 1), similar arguments give us

k1 ≤
1

R

k2 ≤
1

R

H(p) =
1

2
(k1 + k2) ≤

1

R
.

But we cannot say too much about the Gaussian curvature. It
may be very large.

(6) Let X : U → M be a parametrization of a regular surface M .

Consider another regular surface M̃ given by Y = λX where
λ > 0 is a constant. Let D be a disk in U . Let A be the area
of X(D) ⊂ M and Ã be the area of Y(D) ⊂ M̃ . What is the

relation between A, Ã? What is the relation between the Gauss

maps of M, M̃ and what is the relation between the Gaussian

curvatures at the corresponding points in M, M̃? (I.e. at the
points X(u, v),Y(u, v) for the same u, v).

Sol: Let gij, g̃ij be the corresponding first fundamental forms
of X and Y . Then

g̃ij =< Yi, Yj >=< λXi, λXj >= λ2gij

Ñ =
Y1 × Y2
|Y1 × Y2|

=
λX1 × λX2

|λX1 × λX2|
= N

h̃ij =< Ñ, Yij >=< N, λXij >= λhij.
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Thus we have

Ã =

∫
D

√
det(g̃ij)

=

∫
D

√
λ4 det(gij)

= λ2
∫
D

√
det(gij)

= λ2A.

K̃ =
det(h̃ij)

det(g̃ij)

=
λ2 det(hij)

λ4 det(gij)

=
1

λ2
K.

–E–N–D–


