MAT 4030: DIFFERENTIAL GEOMETRY Midterm examination, Oct. 20, 2020

Show all steps clearly in your working. NO point will be given if sufficient justification is not provided.

Answer all EIGHT questions.

(1) Let $\alpha(t) = (at, bt^2, t^3)$ where a, b are nonzero constants. Find $\frac{\tau}{\kappa}$. Show that it is a constant if $4b^4 = 9a^2$.

(*Hint*: You may use the formula for κ, τ for curves with general parametrization:

$$\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}; \quad \tau = -\frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{|\alpha' \times \alpha''|^2}.$$

Sol:

)

$$\alpha' = (a, 2bt, 3t^2)$$
$$\alpha'' = (0, 2b, 6t)$$
$$\alpha''' = (0, 0, 6)$$
$$\alpha' \times \alpha'' = (6bt^2, -6at, 2ab).$$

Then

$$\frac{\tau}{\kappa} = -\frac{\langle \alpha' \times \alpha'', \alpha''' \rangle |\alpha'|^3}{|\alpha' \times \alpha''|^3} \\ = -\frac{12ab \times (a^2 + 4b^2t^2 + 9t^4)^{\frac{3}{2}}}{(36b^2t^4 + 36a^2t^2 + 4a^2b^2)^{\frac{3}{2}}}.$$

If
$$4b^4 = 9a^2$$
, then
 $b^2a^{-2}(36b^2t^4 + 36a^2t^2 + 4a^2b^2) = 81t^4 + 36b^2t^2 + 9a^2$
 $= 9(9t^4 + 4b^2t^2 + a^2).$

So it is a constant.

Note: Conversely, if it is a constant, then

$$a^{2} + 4b^{2}t^{2} + 9t^{4} = C(9b^{2}t^{4} + 9a^{2}t^{2} + a^{2}b^{2})$$

for some constant C. Then

$$a^2 = Ca^2b^2, 4b^2 = 9Ca^2, 9 = 9Cb^2.$$

So $C = b^{-2}$ and $4b^4 = 9a^2$.

(2) Consider the Möbius strip:

$$\mathbf{X}(\theta, v) = \mathbf{a}(\theta) + v\mathbf{w}(\theta)$$

-\pi < \theta < \pi, \quad -\frac{1}{2} < v < \frac{1}{2}, \text{ where}
$$\begin{cases} \mathbf{a}(\theta) &= (\cos \theta, \sin \theta, 0); \\ \mathbf{w}(\theta) &= (\sin \frac{1}{2} \theta \cos \theta, \sin \frac{1}{2} \theta \sin \theta, \cos \frac{1}{2} \theta). \end{cases}$$

Prove that if $\mathbf{X}_{\theta} = \lambda \mathbf{w}$, then $\lambda = 0$. (*Note that* $|\mathbf{w}| = 1$). Are $\mathbf{X}_{\theta}, \mathbf{X}_{v}$ linearly independent?

Sol: (a) Since $|\mathbf{w}| = 1$, if $\mathbf{X}_{\theta} = \lambda \mathbf{w}$, we have

$$\lambda = < \lambda \mathbf{w}, \mathbf{w} >$$

= < $\mathbf{X}_{\theta}, \mathbf{w} >$
= < $\mathbf{a}' + v\mathbf{w}', \mathbf{w} >$
= < $\mathbf{a}', \mathbf{w} > + v < \mathbf{w}', \mathbf{w} >$
= 0

(b) $a\mathbf{X}_{\theta} + b\mathbf{X}_{v} = 0 \Leftrightarrow a\mathbf{X}_{\theta} + b\mathbf{w} = 0$. If a = 0, then $b\mathbf{w} = 0$. Since $\mathbf{w} \neq 0$, we have b = 0. If $a \neq 0$, then

$$\mathbf{X}_{\theta} = -\frac{b}{a}\mathbf{w}$$

Then by the result in (a), we have b = 0. Thus $a\mathbf{X}_{\theta} = 0$. [Next we show that $\mathbf{X}_{\theta} \neq 0$. If $\mathbf{X}_{\theta} = 0$, then $(-\sin\theta, \cos\theta, 0) + v(\frac{1}{2}\cos\frac{1}{2}\theta\cos\theta - \sin\frac{1}{2}\theta\sin\theta, \frac{1}{2}\cos\frac{1}{2}\theta\sin\theta + \sin\frac{1}{2}\theta\cos\theta, -\frac{1}{2}\sin\frac{1}{2}\theta) = 0$. Thus $v\sin\frac{1}{2}\theta = 0$.

If v = 0, then $(-\sin\theta, \cos\theta, 0) = 0$, this is a contradiction. If $\sin\frac{1}{2}\theta = 0$, then $\theta = 0$ since $-\pi < \theta < \pi$. So

$$(0,1,0) + v(\frac{1}{2},0,0) = 0.$$

This is also a contradiction. So $\mathbf{X}_{\theta} \neq 0$.] Thus a = 0.

So

$$a\mathbf{X}_{\theta} + b\mathbf{X}_{v} = 0 \Leftrightarrow a = b = 0,$$

which means $\{\mathbf{X}_{\theta}, \mathbf{X}_{v}\}$ is linearly independent.

2

(3) Consider the surface given by $\{z = xy\}$. Parametrized the surface by

$$\mathbf{X}(u,v) = (u,v,uv).$$

(a) Find the coefficients of the first and second fundamental form with respect to this parametrization.

(b) Find the matrix of the shape operator S with respect to **N** and with respect to the ordered basis $\mathbf{X}_u, \mathbf{X}_v$.

(c) Find the Gaussian curvature and mean curvature of the surface.

Sol:

$$\mathbf{X}_{u} = (1, 0, v), \mathbf{X}_{v} = (0, 1, u)$$
$$\mathbf{X}_{uu} = (0, 0, 0), \mathbf{X}_{uv} = (0, 0, 1), \mathbf{X}_{vv} = (0, 0, 0)$$

So

$$\mathbf{N} = (1 + u^2 + v^2)^{-\frac{1}{2}}(-v, -u, 1).$$

(a)

$$E = 1 + v^{2}, F = uv, G = 1 + u^{2},$$
$$e = 0, f = (1 + u^{2} + v^{2})^{-\frac{1}{2}}, g = 0.$$

(b) The matrix is

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} = \frac{1}{EG - F^2} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} G & -F \\ -F & E \end{pmatrix}$$

So the matrix is

$$(1+u^{2}+v^{2})^{-\frac{3}{2}} \begin{pmatrix} -uv & 1+v^{2} \\ 1+u^{2} & -uv \end{pmatrix}$$
$$K = -\frac{1}{[1+u^{2}+v^{2}]^{2}},$$
$$H = -\frac{uv}{[1+u^{2}+v^{2}]^{\frac{3}{2}}}.$$

(4) Let $\alpha(s) = (x(s), y(s))$ be a regular curve in \mathbb{R}^2 parametrized by arc length with unit tangent $\mathbf{t} = \alpha'$. Define the normal \mathbf{n} so that $\{\mathbf{t}, \mathbf{n}\}$ are positively oriented. Define the curvature κ to be the value so that $\mathbf{t}' = \kappa \mathbf{n}$.

Find the curvature of a circle with radius r under the following two parametrizations:

(i)
$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r});$$

(ii) $\beta(s) = (r \cos(-\frac{s}{r}), r \sin(-\frac{s}{r})).$

Sol: $\alpha'(s) = (x'(s), y'(s))$. Since $\{\mathbf{t}, \mathbf{n}\}$ is positively oriented and $\alpha(s)$ is parametrized by arc length, we have

$$\mathbf{n} = (-y^{'}(s), x^{'}(s)).$$

Thus

$$\kappa = <\kappa {f n}, {f n}> = <{f t}', {f n}>$$

(i)
$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r})$$
. Then
 $\alpha'(s) = (-\sin \frac{s}{r}, \cos \frac{s}{r}).$

So $\alpha(s)$ is parametrized by arc length, then

$$\begin{aligned} \kappa = < \mathbf{t}', \mathbf{n} > \\ = < \left(-\frac{1}{r}\cos\frac{s}{r}, -\frac{1}{r}\sin\frac{s}{r}\right), \left(-\cos\frac{s}{r}, -\sin\frac{s}{r}\right) > \\ = \frac{1}{r} \end{aligned}$$

(ii) $\beta(s) = \left(r\cos\left(-\frac{s}{r}\right), r\sin\left(-\frac{s}{r}\right)\right)$. Then
 $\beta'(s) = \left(-\sin\frac{s}{r}, -\cos\frac{s}{r}\right). \end{aligned}$

So $\beta(s)$ is parametrized by arc length, then

$$\begin{split} \kappa = &< \mathbf{t}', \mathbf{n} > \\ = &< (-\frac{1}{r} \cos \frac{s}{r}, \frac{1}{r} \sin \frac{s}{r}), (\cos \frac{s}{r}, -\sin \frac{s}{r}) > \\ = &-\frac{1}{r} \end{split}$$

(5) Let M be a regular surface and $p \in M$. Suppose M touches a sphere $\mathbb{S}^2(R)$ of radius R at p (i.e. the tangent planes coincide at p). Suppose M is contained in the interior of $\mathbb{S}^2(R)$. With the unit normal \mathbf{N} pointing insider the sphere. Show that each principal curvature of M at p is at least $\frac{1}{R}$.

What can you say the mean curvature and Gaussian curvature of M at p?

What can you say if M is in the exterior of $\mathbb{S}^2(R)$?

(*Hint: You may assume that* p = (0, 0, 0)*, the tangent plane is the xy-plane and* $\mathbf{N} = (0, 0, 1)$ *at* p.)

Sol: Near p, M is given by the graph of function (with principal curvatures k_1, k_2 with principal direction (1, 0, 0), (0, 1, 0):

$$p(x,y) = k_1 x^2 + k_2 y^2 + o(x^2 + y^2),$$

and the sphere is given by the graph of the function

$$q(x,y) = \frac{1}{R}(x^2 + k_2 y^2) + o(x^2 + y^2).$$

Since M is insider the sphere, in this settings, we have must have $p \ge q$. So

$$(k_1 - \frac{1}{R})x^2 + (k_2 - \frac{1}{R})y^2 + o(x^2 + y^2) \ge 0$$

near (0,0). Hence $k_i \ge \frac{1}{R}$. Mean curvature $H \ge \frac{1}{R}$ and Gaussian curvature $K \ge \frac{1}{R^2}$.

If M is outside the sphere, then w.r.t. the unit normal \mathbf{N} as above, the principal curvatures are $\leq \frac{1}{R}$, the mean curvature $H \leq \frac{1}{R}$. But we cannot say too much about the Gaussian curvature. It may be very large. (Consider a very small sphere outside the sphere and touches the sphere.)

Another proof:

(a) Let $\vec{v} \in T_p M$ be a unit vector. Let $\alpha(s) \subset M$ be a smooth curve parametrized by arc length such that

$$\alpha(0) = p, \alpha'(0) = \vec{v}.$$

Let q = (0, 0, R), so by the assumption,

$$f(s) = |\alpha(s) - q|$$

has a local maximum at s = 0. Then $f'' \leq 0$, which is

$$< \alpha'(0), \alpha'(0) > + < \alpha(0) - q, \alpha''(0) > \le 0$$

$$1 + < -R\vec{N}(p), \alpha''(0) > \le 0$$

$$< \vec{N}(p), \alpha''(0) > \ge \frac{1}{R}$$

$$< -\frac{d}{ds}\Big|_{s=0}\vec{N}(\alpha(s)), \alpha'(0) > \ge \frac{1}{R}$$

$$< S_p(\vec{v}), \vec{v} > \ge \frac{1}{R}$$

for any unit vector $\vec{v} \in T_p M$.

Let $\{\vec{v}_1, \vec{v}_2\}$ be an orthonormal basis of T_pM and $\{k_1, k_2\}$ be the principle curvatures such that

$$S_p(\vec{v}_1) = k_1 \vec{v}_1, S_p(\vec{v}_2) = k_2 \vec{v}_2.$$

Then by the previous result

$$k_1 = \langle S_p(\vec{v}_1), \vec{v}_1 \rangle \ge \frac{1}{R}$$

$$k_2 = \langle S_p(\vec{v}_2), \vec{v}_2 \rangle \ge \frac{1}{R}.$$

(b) Since by (a),

$$k_1 = \langle S_p(\vec{v}_1), \vec{v}_1 \rangle \ge \frac{1}{R}$$

 $k_2 = \langle S_p(\vec{v}_2), \vec{v}_2 \rangle \ge \frac{1}{R}.$

We have

$$H(p) = \frac{1}{2}(k_1 + k_2) \ge \frac{1}{R}$$
$$K(p) = k_1 k_2 \ge \frac{1}{R^2}$$

(c) If we assume $\vec{N}(p) = (0, 0, 1)$, similar arguments give us

$$k_1 \leq \frac{1}{R}$$
$$k_2 \leq \frac{1}{R}$$
$$H(p) = \frac{1}{2}(k_1 + k_2) \leq \frac{1}{R}$$

But we cannot say too much about the Gaussian curvature. It may be very large.

(6) Let $\mathbf{X} : U \to M$ be a parametrization of a regular surface M. Consider another regular surface \widetilde{M} given by $\mathbf{Y} = \lambda \mathbf{X}$ where $\lambda > 0$ is a constant. Let D be a disk in U. Let A be the area of $\mathbf{X}(D) \subset M$ and \widetilde{A} be the area of $\mathbf{Y}(D) \subset \widetilde{M}$. What is the relation between A, \widetilde{A} ? What is the relation between the Gauss maps of M, \widetilde{M} and what is the relation between the Gaussian curvatures at the corresponding points in M, \widetilde{M} ? (I.e. at the points $\mathbf{X}(u, v), \mathbf{Y}(u, v)$ for the same u, v).

Sol: Let g_{ij}, \tilde{g}_{ij} be the corresponding first fundamental forms of X and Y. Then

$$\widetilde{g}_{ij} = \langle Y_i, Y_j \rangle = \langle \lambda X_i, \lambda X_j \rangle = \lambda^2 g_{ij}$$
$$\widetilde{N} = \frac{Y_1 \times Y_2}{|Y_1 \times Y_2|} = \frac{\lambda X_1 \times \lambda X_2}{|\lambda X_1 \times \lambda X_2|} = N$$
$$\widetilde{h}_{ij} = \langle \widetilde{N}, Y_{ij} \rangle = \langle N, \lambda X_{ij} \rangle = \lambda h_{ij}.$$

6

Thus we have

$$\begin{split} \widetilde{A} &= \int_{D} \sqrt{\det(\widetilde{g}_{ij})} \\ &= \int_{D} \sqrt{\lambda^{4} \det(g_{ij})} \\ &= \lambda^{2} \int_{D} \sqrt{\det(g_{ij})} \\ &= \lambda^{2} A. \\ \widetilde{K} &= \frac{\det(\widetilde{h}_{ij})}{\det(\widetilde{g}_{ij})} \\ &= \frac{\lambda^{2} \det(h_{ij})}{\lambda^{4} \det(g_{ij})} \\ &= \frac{1}{\lambda^{2}} K. \end{split}$$

-E - N - D -