Proposition

Let M be a regular surface and let $\mathbf{X} : U \to M$, $\mathbf{Y} : V \to M$ be two coordinate parametrizations.

⊡ ▶ < ≣ ▶

Proposition

Let *M* be a regular surface and let $\mathbf{X} : U \to M$, $\mathbf{Y} : V \to M$ be two coordinate parametrizations. Let $S = \mathbf{X}(U) \cap \mathbf{Y}(V) \subset M$.

⊡ ▶ < ≣ ▶

Proposition

Let M be a regular surface and let $\mathbf{X} : U \to M, \mathbf{Y} : V \to M$ be two coordinate parametrizations. Let $S = \mathbf{X}(U) \cap \mathbf{Y}(V) \subset M$. Let $U_1 = \mathbf{X}^{-1}(S)$ and $V_1 = \mathbf{Y}^{-1}(S)$.

Proposition

Let *M* be a regular surface and let $\mathbf{X} : U \to M$, $\mathbf{Y} : V \to M$ be two coordinate parametrizations. Let $S = \mathbf{X}(U) \cap \mathbf{Y}(V) \subset M$. Let $U_1 = \mathbf{X}^{-1}(S)$ and $V_1 = \mathbf{Y}^{-1}(S)$. Then $\mathbf{Y}^{-1} \circ \mathbf{X} : U_1 \to V_1$ is a diffeomorphism.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$.

Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$. Now if $(u, v) \in U_1$ with $X(u, v) \in S_1$, then

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), f(x(u,v), y(u,v)))$$

because z = f(x, y).

Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$. Now if $(u, v) \in U_1$ with $X(u, v) \in S_1$, then

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), f(x(u,v), y(u,v)))$$

because
$$z = f(x, y)$$
.
 $\mathbf{X}_{u} = (x_{u}, y_{u}, f_{x}x_{u} + f_{y}y_{u}), \mathbf{X}_{v} = (x_{v}, y_{v}, f_{x}x_{v} + f_{y}y_{v}).$

Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$. Now if $(u, v) \in U_1$ with $X(u, v) \in S_1$, then

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), f(x(u,v), y(u,v)))$$

because z = f(x, y). $\mathbf{X}_u = (x_u, y_u, f_x x_u + f_y y_u), \mathbf{X}_v = (x_v, y_v, f_x x_v + f_y y_v).$ Since \mathbf{X}_u and \mathbf{X}_v are linearly independent, we have $(x_u, y_u), (x_v, y_v)$ are linearly independent (why?). This implies $(u, v) \rightarrow (x, y)$ is diffeormphic near $\mathbf{X}^{-1}(p)$.

Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$. Now if $(u, v) \in U_1$ with $X(u, v) \in S_1$, then

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), f(x(u,v), y(u,v)))$$

because z = f(x, y). $\mathbf{X}_u = (x_u, y_u, f_x x_u + f_y y_u), \mathbf{X}_v = (x_v, y_v, f_x x_v + f_y y_v).$ Since \mathbf{X}_u and \mathbf{X}_v are linearly independent, we have $(x_u, y_u), (x_v, y_v)$ are linearly independent (why?). This implies $(u, v) \rightarrow (x, y)$ is diffeormphic near $\mathbf{X}^{-1}(p)$. Similarly, if $(\xi, \eta) \in V_1$, then $(\xi, \eta) \rightarrow (x, y)$ is diffeomorphic near $\mathbf{Y}^{-1}(p)$. Hence $(\xi, \eta) \rightarrow (u, v)$ is diffeomorphic.

Definition

(i) Let M be regular surface and let f : M → R be a function. f is said to be smooth if and only if f ∘ X is smooth for all coordinate chart X : U → M.

Main point: The concepts are well-defined.

Definition

- (i) Let M be regular surface and let f : M → R be a function. f is said to be smooth if and only if f ∘ X is smooth for all coordinate chart X : U → M.
- (ii) M₁, M₂ be regular surfaces and let F : M₁ → M₂ be a map. F is said to be smooth if and only if the following is true: For any p ∈ M₁ and any coordinate charts X of p, Y of q = F(p), Y⁻¹ ∘ X is smooth whenever it is defined.

Main point: The concepts are well-defined.

An abstract surface (differentiable manifold of dimension two) is a set M together with a family of one-to-one maps $\mathbf{X}_{\alpha} : U_{\alpha} \to M$ of open sets $U_{\alpha} \subset \mathbb{R}^2$ such that:

An abstract surface (differentiable manifold of dimension two) is a set M together with a family of one-to-one maps $\mathbf{X}_{\alpha} : U_{\alpha} \to M$ of open sets $U_{\alpha} \subset \mathbb{R}^2$ such that:

• $\bigcup_{\alpha} \mathbf{X}_{\alpha}(U_{\alpha}) = M;$

An abstract surface (differentiable manifold of dimension two) is a set M together with a family of one-to-one maps $\mathbf{X}_{\alpha} : U_{\alpha} \to M$ of open sets $U_{\alpha} \subset \mathbb{R}^2$ such that:

- $\bigcup_{\alpha} \mathbf{X}_{\alpha}(U_{\alpha}) = M;$
- For any α, β , if $W = \mathbf{X}_{\alpha}(U_{\alpha}) \cap \mathbf{X}_{\beta}(U_{\beta}) \neq \emptyset$, then $V_{\alpha} = \mathbf{X}_{\alpha}^{-1}(W), V_{\beta} = \mathbf{X}_{\beta}^{-1}(W)$ are open sets in \mathbb{R}^2 and

An abstract surface (differentiable manifold of dimension two) is a set M together with a family of one-to-one maps $\mathbf{X}_{\alpha} : U_{\alpha} \to M$ of open sets $U_{\alpha} \subset \mathbb{R}^2$ such that:

- $\bigcup_{\alpha} \mathbf{X}_{\alpha}(U_{\alpha}) = M;$
- For any α, β , if $W = \mathbf{X}_{\alpha}(U_{\alpha}) \cap \mathbf{X}_{\beta}(U_{\beta}) \neq \emptyset$, then $V_{\alpha} = \mathbf{X}_{\alpha}^{-1}(W), V_{\beta} = \mathbf{X}_{\beta}^{-1}(W)$ are open sets in \mathbb{R}^2 and $\mathbf{X}_{\beta}^{-1} \circ \mathbf{X}_{\alpha} : V_{\alpha} \to V_{\beta}$ and $\mathbf{X}_{\alpha}^{-1} \circ \mathbf{X}_{\beta} : V_{\beta} \to V_{\alpha}$ are diffeomorphisms.

Definition

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch, and let $M = \mathbf{X}(U)$. Let $p \in M$ be a point in the surface. $p = \mathbf{X}(u_0^1, u_0^2)$ for some (u_0^1, u_0^2) in U. Then the tangent space $T_p(M)$ of M at p is the vector space spanned by $\mathbf{X}_1(u_0^1, u_0^2), \mathbf{X}_2(u_0^1, u_0^2)$. Since $\mathbf{X}_1, \mathbf{X}_2$ are linearly independent, dim $(T_p(M)) = 2$.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Here
$$\mathbf{X}_1 = \frac{\partial \mathbf{X}}{\partial u^1}$$
, etc.

Proposition

 $T_p(M)$ is well defined. Namely, suppose $\phi : V \to U$ is a diffeomorphism, $V \subset \mathbb{R}^2$ with coordinates (v^1, v^2) . Let $\mathbf{Y} = \mathbf{X} \circ \phi$. Then the vector space spanned by $\frac{\partial \mathbf{X}}{\partial u^1}$, $\frac{\partial \mathbf{X}}{\partial u^2}$, and the vector space spanned by $\frac{\partial \mathbf{Y}}{\partial v^1}$, $\frac{\partial \mathbf{Y}}{\partial v^2}$ are the same.

Lemma

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch and let $M = \mathbf{X}(U)$. Let $\alpha(t)$ be a smooth curve in \mathbb{R}^3 such that $\alpha(t) \in M$ for all $t \in (a, b)$ passing through a point $\mathbf{p} = \alpha(t_0)$ say. Then there is $\epsilon > 0$ and there is a unique smooth curve $\beta(t)$ in U with $t \in (t_0 - \epsilon, t_0 + \epsilon)$ such that $\alpha(t) = \mathbf{X}(\beta(t))$ in $(t_0 - \epsilon, t_0 + \epsilon)$.

Sketch of proof.

Let α , p as in the proposition and let $(u_0^1, u_0^2) \in U$ with $\mathbf{X}(u_0^1, u_0^2)$. By the lemma, we may assume that near p, the surface is a graph over xy-plane. Namely, there are open sets $\mathbf{u}_0 \in V \subset U$ and Wand a diffeomorphism $\phi: W \to V$ with $\phi^{-1}(\mathbf{u}_0) = (x_0, y_0) \in W$ such that $\mathbf{Y}(x, y) = \mathbf{X} \circ \phi(x, y) = (x, y, f(x, y))$. Now $\alpha(t) \in \mathbf{X}(U)$ so $\alpha(t) = (x(t), y(t), f(x(t), y(t))) = \mathbf{Y}(x(t), y(t))$. Let $\beta(t) = \phi(x(t), y(t))$. Then $\mathbf{X}(\beta(t)) = \alpha(t)$.

Tangent space consists of tangent vectors of curves on M, cont.

Corollary

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch, and let $M = \mathbf{X}(U)$. Let $p \in M$ be a point in the surface. Then $T_p(M)$ consists of the tangent vectors of smooth curves on M passing through p.

Definition

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch and let $M = \mathbf{X}(U)$. A nonzero vector N at a point $p = \mathbf{X}(u^1, u^2) \in M$ is called a normal vector of M at p if it is orthogonal to $T_p(M)$. A normal vector N at p is called a unit normal vector if N has unit length.

Questions: How many normal vectors at a point are there? How many unit normal vectors?

Definition

Let $\mathbf{X} : U \to \mathbb{R}^3$ be a regular surface patch, and let $M = \mathbf{X}(U)$. Let $p \in M$ be a point in the surface.L The first fundamental form g of M at p is the inner product at each $T_p(M)$ given by $g(\mathbf{v}, \mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle$. The first fundamental form of M is the inner product given by $g(\mathbf{v}, \mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle$ on every $T_p(M)$ for with $p \in M$.

Sometimes $g(\mathbf{v}, \mathbf{w})$ is written as $I(\mathbf{v}, \mathbf{w})$.

Let $X : U \to V \subset M$ be a coordinate parametrization. The *coefficients of the first fundamental form g* with respect to the parametrization are defined as:

$$\begin{cases} E = g(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathbf{X}_u, \mathbf{X}_u \rangle; \\ F = g(\mathbf{X}_u, \mathbf{X}_v) = \langle \mathbf{X}_u, \mathbf{X}_v \rangle; \\ G = g(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathbf{X}_v, \mathbf{X}_v \rangle. \end{cases}$$

if (u, v) denotes points in U. If we use (u^1, u^2) instead of (u, v) and let $\mathbf{X}_i = \frac{\partial \mathbf{X}}{\partial u^i}$, then we also denote coefficients of the first fundamental form g as

$$g_{ij} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle.$$

・ロ・・母・・母・・ ゆくの

Length of a curve

Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a smooth curve on M, $a \le t \le b$ such that $\alpha(t) = \mathbf{X}((u(t), v(t)))$ in local coordinates.

Length of a curve

Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a smooth curve on M, $a \le t \le b$ such that $\alpha(t) = \mathbf{X}((u(t), v(t)))$ in local coordinates.

Then the length of α is given by

$$\ell = \int_{a}^{b} |\alpha'|(t)dt$$
$$= \int_{a}^{b} \left(E(\alpha(t))(\frac{du}{dt})^{2} + 2F(\alpha(t))\frac{du}{dt}\frac{dv}{dt} + G(\alpha(t))(\frac{dv}{dt})^{2} \right)^{\frac{1}{2}} dt.$$

Length of a curve

Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a smooth curve on M, $a \le t \le b$ such that $\alpha(t) = \mathbf{X}((u(t), v(t)))$ in local coordinates.

Then the length of α is given by

$$\ell = \int_{a}^{b} |\alpha'|(t)dt$$
$$= \int_{a}^{b} \left(E(\alpha(t))(\frac{du}{dt})^{2} + 2F(\alpha(t))\frac{du}{dt}\frac{dv}{dt} + G(\alpha(t))(\frac{dv}{dt})^{2} \right)^{\frac{1}{2}} dt.$$

If we use (u^1, u^2) instead of (u, v) and $\mathbf{X}_i = \frac{\partial \mathbf{X}}{\partial u^i}$,

$$\ell = \int_{a}^{b} \left(\sum_{i,j=1}^{2} g_{ij} \frac{du^{i}}{dt} \frac{du^{j}}{dt} \right)^{\frac{1}{2}} dt$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

So sometimes, the first fundamental form is written symbolically as

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2,$$

or

$$g=\sum_{i,j=1}^2 g_{ij}du^i du^j.$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

Let $\mathbf{X} : U \to M$ be a parametrization of a regular surface. Let R be a closed and bounded region in $\mathbf{X}(U)$. Let $V = \mathbf{X}^{-1}(R)$. The area of R is given by

$$A(R) = \iint_V |\mathbf{X}_u \times \mathbf{X}_v| du dv = \iint_V \sqrt{EG - F^2}$$

where E, F, G are the coefficients of the first fundamental form w.r.t. this parametrization. It is well-defined: A(R) is independent of parametrization.