
Regular surfaces 2: Change of coordinates and
smooth structure

Proposition

Let M be a regular surface and let X : U → M, Y : V → M
be two coordinate parametrizations.

Let S = X(U) ∩ Y(V ) ⊂ M.

Let U1 = X−1(S) and V1 = Y−1(S).

Then Y−1 ◦ X : U1 → V1 is a diffeomorphism.
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Proof

Let p ∈ S . Then there is an open set S1 ⊂ S such that S1 is
given by the graph {(x , y , z)|(x , y) ∈ O, z = f (x , y)}.

Now if (u, v) ∈ U1 with X(u, v) ∈ S1, then

X(u, v) = (x(u, v), y(u, v), f (x(u, v), y(u, v)))

because z = f (x , y).

Xu = (xu, yu, fxxu + fyyu),Xv = (xv , yv , fxxv + fyyv ).

Since Xu and Xv are linearly independent, we have
(xu, yu), (xv , yv ) are linearly independent (why?). This implies
(u, v)→ (x , y) is difffeormphic near X−1(p).

Similarly, if (ξ, η) ∈ V1, then (ξ, η)→ (x , y) is diffeomorphic
near Y−1(p). Hence (ξ, η)→ (u, v) is diffeomorphic.
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Smooth structure

Definition

(i) Let M be regular surface and let f : M → R be a function. f
is said to be smooth if and only if f ◦ X is smooth for all
coordinate chart X : U → M.

(ii) M1, M2 be regular surfaces and let F : M1 → M2 be a map.
F is said to be smooth if and only if the following is true: For
any p ∈ M1 and any coordinate charts X of p, Y of q = F (p),
Y−1 ◦ X is smooth whenever it is defined.

Main point: The concepts are well-defined.
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Abstract surfaces: a digression

An abstract surface (differentiable manifold of dimension
two) is a set M together with a family of one-to-one maps
Xα : Uα → M of open sets Uα ⊂ R2 such that:

⋃
α Xα(Uα) = M;

For any α, β, if W = Xα(Uα) ∩ Xβ(Uβ) 6= ∅, then
Vα = X−1α (W ),Vβ = X−1β (W ) are open sets in R2 and

X−1β ◦ Xα : Vα → Vβ and X−1α ◦ Xβ : Vβ → Vα are
diffeomorphisms.
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Tangent space

Definition

Let X : U → R3 be a regular surface patch, and let M = X(U).
Let p ∈ M be a point in the surface. p = X(u1

0 , u
2
0) for some

(u1
0 , u

2
0) in U. Then the tangent space Tp(M) of M at p is the

vector space spanned by X1(u1
0 , u

2
0),X2(u1

0 , u
2
0). Since X1,X2 are

linearly independent, dim(Tp(M)) = 2.

Here X1 =
∂X

∂u1
, etc.



Tangent space is well-defined

Proposition

Tp(M) is well defined. Namely, suppose φ : V → U is a
diffeomorphism, V ⊂ R2 with coordinates (v1, v2). Let Y = X ◦ φ.
Then the vector space spanned by ∂X

∂u1
, ∂X
∂u2

, and the vector space

spanned by ∂Y
∂v1 , ∂Y

∂v2 are the same.



Tangent space consists of tangent vectors of curves on M

Lemma

Let X : U → R3 be a regular surface patch and let M = X(U). Let
α(t) be a smooth curve in R3 such that α(t) ∈ M for all t ∈ (a, b)
passing through a point p = α(t0) say. Then there is ε > 0 and
there is a unique smooth curve β(t) in U with t ∈ (t0 − ε, t0 + ε)
such that α(t) = X(β(t)) in (t0 − ε, t0 + ε).



Sketch of proof.

Let α, p as in the proposition and let (u1
0 , u

2
0) ∈ U with X(u1

0 , u
2
0).

By the lemma, we may assume that near p, the surface is a graph
over xy -plane. Namely, there are open sets u0 ∈ V ⊂ U and W
and a diffeomorphism φ : W → V with φ−1(u0) = (x0, y0) ∈W
such that Y(x , y) = X ◦ φ(x , y) = (x , y , f (x , y). Now α(t) ∈ X(U)
so α(t) = (x(t), y(t), f (x(t), y(t))) = Y(x(t), y(t)). Let
β(t) = φ(x(t), y(t)). Then X(β(t)) = α(t).



Tangent space consists of tangent vectors of curves on M ,
cont.

Corollary

Let X : U → R3 be a regular surface patch, and let M = X(U).
Let p ∈ M be a point in the surface. Then Tp(M) consists of the
tangent vectors of smooth curves on M passing through p.



Normals and unit normals

Definition

Let X : U → R3 be a regular surface patch and let M = X(U). A
nonzero vector N at a point p = X(u1, u2) ∈ M is called a normal
vector of M at p if it is orthogonal to Tp(M). A normal vector N
at p is called a unit normal vector if N has unit length.

Questions: How many normal vectors at a point are there? How
many unit normal vectors?



First fundamental form

Definition

Let X : U → R3 be a regular surface patch, and let M = X(U).
Let p ∈ M be a point in the surface.L The first fundamental form
g of M at p is the inner product at each Tp(M) given by
g(v,w) = 〈v,w〉. The first fundamental form of M is the inner
product given by g(v,w) = 〈v,w〉 on every Tp(M) for with p ∈ M.

Sometimes g(v,w) is written as I(v,w).



Coefficients of the 1st fundamental form

Let X : U → V ⊂ M be a coordinate parametrization. The
coefficients of the first fundamental form g with respect to the
parametrization are defined as:

E = g(Xu,Xu) = 〈Xu,Xu〉;
F = g(Xu,Xv ) = 〈Xu,Xv 〉;
G = g(Xu,Xu) = 〈Xv ,Xv 〉.

if (u, v) denotes points in U.
If we use (u1, u2) instead of (u, v) and let Xi = ∂X

∂ui
, then we also

denote coefficients of the first fundamental form g as

gij = 〈Xi ,Xj〉.



Length of a curve

Suppose α(t) = (x(t), y(t), z(t)) is a smooth curve on M,
a ≤ t ≤ b such that α(t) = X((u(t), v(t)) in local
coordinates.

Then the length of α is given by

` =

∫ b

a
|α′|(t)dt

=

∫ b

a

(
E (α(t))(

du

dt
)2 + 2F (α(t))

du

dt

dv

dt
+ G (α(t))(

dv

dt
)2
) 1

2

dt.

If we use (u1, u2) instead of (u, v) and Xi = ∂X
∂ui

,

` =

∫ b

a

 2∑
i ,j=1

gij
dui

dt

duj

dt

 1
2

dt.
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Length of a curve, cont.

So sometimes, the first fundamental form is written
symbolically as

ds2 = Edu2 + 2Fdudv + Gdv2,

or

g =
2∑

i ,j=1

gijduiduj .



Area of a region

Let X : U → M be a parametrization of a regular surface. Let R
be a closed and bounded region in X(U). Let V = X−1(R). The
area of R is given by

A(R) =

∫∫
V
|Xu × Xv |dudv =

∫∫
V

√
EG − F 2

where E ,F ,G are the coefficients of the first fundamental form
w.r.t. this parametrization. It is well-defined: A(R) is independent
of parametrization.


