A subset $M\subset \mathbb{R}^3$ is said to be a regular surface if for any $p\in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $X : D \to M \cap U$ such that the following are true:

A subset $M\subset \mathbb{R}^3$ is said to be a regular surface if for any $p\in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $X : D \to M \cap U$ such that the following are true:

 $(rs1)$ X is smooth.

A subset $M\subset \mathbb{R}^3$ is said to be a regular surface if for any $p\in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $X : D \to M \cap U$ such that the following are true:

 $(rs1)$ X is smooth.

(rs2) d**X** is full rank: $X_u = \frac{\partial X}{\partial u}$ $\frac{\partial {\bf X}}{\partial u}$ and ${\bf X}_{\rm v}=\frac{\partial {\bf X}}{\partial v}$ $\frac{\partial {\bf X}}{\partial {\bf v}}$ are linearly independent, for any $(u, v) \in D$.

A subset $M\subset \mathbb{R}^3$ is said to be a regular surface if for any $p\in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $X : D \to M \cap U$ such that the following are true:

- $(rs1)$ X is smooth.
- (rs2) d**X** is full rank: $X_u = \frac{\partial X}{\partial u}$ $\frac{\partial {\bf X}}{\partial u}$ and ${\bf X}_{\rm v}=\frac{\partial {\bf X}}{\partial v}$ $\frac{\partial {\bf X}}{\partial {\bf v}}$ are linearly independent, for any $(u, v) \in D$.
- (rs3) X is a homeomorphism from D onto $M \cap U$. (That is: X is bijective, **X** and X^{-1} are continuous).

4 0 F

 $2Q$

|重き

 X is called a *parametrization*, and V is called a *coordinate* chart (patch, neighborhood).

つくい

 X is called a *parametrization*, and V is called a *coordinate* chart (patch, neighborhood).

If $X(u, v) = p$, then (u, v) are called local coordinates of p.

へのへ

 X is called a *parametrization*, and V is called a *coordinate* chart (patch, neighborhood).

If $\mathbf{X}(u, v) = p$, then (u, v) are called local coordinates of p. So a regular surface is a set M in \mathbb{R}^3 which can be covered by a family of coordinate charts.

∽≏ດ

X has full rank

 299 メロト メ団 トメ 君 トメ 君 ト 重

X is a homeomorphism

K ロ ▶ K 御 ▶ K 君 ▶ 一 三 ト È 299

Example 1: graphs, $z = f(x, y)$

∢ ロ ▶ 《 御 ▶ 《 君 ▶ 《 君 ▶ 》 \equiv 299

Example 2: spheres, $\{x^2 + y^2 + z^2 = 1\}$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ め Q Q →

Spherical coordinates

すロト す部 トす 君 ト す 君 ト È 299

Stereographic projection

≮ロト ⊀個 ▶ ⊀ 君 ▶ ⊀ 君 ▶ È 299

Proposition

Let $f: U \to \mathbb{R}$ be a smooth function on an open set $U \subset \mathbb{R}^2$. Then the graph of f defined by the following is a regular surface:

$$
\mathrm{graph}(f) = \{ (x, y, f(x, y)) | (x, y) \in U \}.
$$

→ 伊 ▶ → ヨ ▶ → ヨ ▶

つくい

4 0 8

Proposition

Let M be regular surface and let $X: U \rightarrow M$ be a coordinate parametrization. Then for any $p = (u_0, v_0) \in U$ there is a open set $V \subset U$ with $p \in V$ such that $\mathbf{X}(V)$ is a graph over an open set in one of the coordinate plane.

∽≏ດ

Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathsf{x}) = \mathsf{y}(\mathsf{x}) = \mathsf{where} \ \mathsf{x} = (x^1, \dots, x^n)$, $\mathbf{y}=(y^1,\ldots,y^m)$. Let $\mathbf{x_0}=(x_0^1,\ldots,x_0^n)\in U$. The Jacobian matrix of F at x_0 is the $m \times n$ matrix

$$
dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).
$$

へのへ

Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathsf{x}) = \mathsf{y}(\mathsf{x}) = \mathsf{where} \ \mathsf{x} = (x^1, \dots, x^n)$, $\mathbf{y}=(y^1,\ldots,y^m)$. Let $\mathbf{x_0}=(x_0^1,\ldots,x_0^n)\in U$. The Jacobian matrix of F at x_0 is the $m \times n$ matrix

$$
dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).
$$

Theorem

(Inverse Function Theorem) Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni x_0$ and $W \ni y_0$, such that F is a diffeomorphism from V to W. That is to say, $F: V \to W$ is bijective and F^{-1} is also smooth on W.

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$.

 $2Q$

扂

4 0 F

Proof of the inverse function theorem

Proof:

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$
F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),
$$

$$
G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|) \text{ as } \mathbf{x}_1, \mathbf{x}_2 \to \mathbf{0}.
$$

 $2Q$

重き 扂

 \leftarrow \Box

Proof of the inverse function theorem

Proof:

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$
F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),
$$

 $G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|)$ as $\mathbf{x}_1, \mathbf{x}_2 \to \mathbf{0}$. Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta\}$, we have,

$$
|F(\mathbf{x}_1)-F(\mathbf{x}_2)|\geq |A(\mathbf{x}_1-\mathbf{x}_2)|-\epsilon|\mathbf{x}_1-\mathbf{x}_2|
$$

つくい

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$
F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),
$$

 $G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|)$ as $\mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{0}$. Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta\}$, we have,

$$
|F(\mathbf{x}_1)-F(\mathbf{x}_2)|\geq |A(\mathbf{x}_1-\mathbf{x}_2)|-\epsilon|\mathbf{x}_1-\mathbf{x}_2|
$$

From this we conclude that F is one-one in $B(\mathbf{0}, \delta)$ if $\epsilon > 0$ is small enough.

Let $y_1 \in \mathbb{R}^n$. Want to find **x** so that $F(x) = Ax + G(x) = y_1$.

 \leftarrow \Box

→ 伊 * 4 重 * 4 重 *

 299

目

Let $y_1 \in \mathbb{R}^n$. Want to find **x** so that $F(x) = Ax + G(x) = y_1$. \exists **x**₁, A **x**₁ = **y**₁.(?) Inductively, \exists **x**_{n+1} with $Ax_{n+1} = y_1 - G(x_n).$

 $2Q$

目

御 ▶ イヨ ▶ イヨ ▶

Let $y_1 \in \mathbb{R}^n$. Want to find **x** so that $F(x) = Ax + G(x) = y_1$. \exists **x**₁, A **x**₁ = **y**₁.(?) Inductively, \exists **x**_{n+1} with $A\mathbf{x}_{n+1} = \mathbf{y}_1 - G(\mathbf{x}_n).$ There is $\rho>0$ such that if $|\mathbf{y}_1|<\rho,$ then $\mathbf{x}_n\in B(\mathbf{O},\frac{1}{2})$ $\frac{1}{2}\delta$) and $x_n \rightarrow x \in B(\mathbf{0}, \delta)$. (Why?)

Idea of proof

 299 メロメ メ都 ドメ 君 ドメ 君 ドッ 目

Proof:

(Sketch) Let $X(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$
\det\left(\begin{array}{cc}x_u&x_v\\y_u&y_v\end{array}\right)\neq 0.
$$

4 0 F

K 御 ▶ K 后 ▶ K 后 ▶

活

 299

Proof:

(Sketch) Let $X(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$
\det\left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.
$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse.

 $2Q$

Proof:

(Sketch) Let $X(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$
\det\left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.
$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse.

Then the image of U_1 under **X** is of the form

$$
(x,y) \rightarrow (u(x,y), v(x,y))
$$

\n
$$
\rightarrow (x(u(x,y)), y(u(x,y)), z(u(x,y), v(x,y)))
$$

\n
$$
= (x, y, f(x,y)).
$$

つくい

Proposition

Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f . (That is: if $f(x, y, z) = a$, then $\nabla f(x) \neq 0$.) Then

$$
M = \{(x,y,z) \in U \mid f(x) = a\}
$$

へのへ

is a regular surface.

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

つくい

Consider the map: $F: U \to \mathbb{R}^3$ defined by $F(x, y, z) = (x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F: U \to \mathbb{R}^3$ defined by $F(x, y, z) = (x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse $F^{-1}.$

つくい

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F: U \to \mathbb{R}^3$ defined by $F(x, y, z) = (x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse $F^{-1}.$

つくい

Now
$$
F^{-1}(u, v, t) = (x, y, g(u, v, t)).
$$

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F: U \to \mathbb{R}^3$ defined by $F(x, y, z) = (x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse $F^{-1}.$

Now $F^{-1}(u, v, t) = (x, y, g(u, v, t)).$ Let $W_1 = \{(u, v) | (u, v, a) \in W\}$. Then for $(x, y, z) \in V \cap M$, $F(x, y, z) = (x, y, a) = (u, v, g(u, v, a))$ and so this set is the graph of over (u, v) .

More examples: Quadratic surfaces

目 299 \leftarrow \Box ð \sim 重き ×. ÷.

Torus

メロメメ 倒す メミメメミメー ミー のんぴ

Surfaces of revolution

(□) (@) (È 299 ミト ъ.

Ruled surfaces

 299 メロメ メ都 メメ きょくきょ È