
Regular surfaces 1

Definition

A subset M ⊂ R3 is said to be a regular surface if for any p ∈ M,
there is an open neighborhood U of p in M, an open set D in R2

and a map X : D → M ∩ U such that the following are true:

(rs1) X is smooth.

(rs2) dX is full rank: Xu = ∂X
∂u and Xv = ∂X

∂v are linearly
independent, for any (u, v) ∈ D.

(rs3) X is a homeomorphism from D onto M ∩ U. (That is: X is
bijective, X and X−1 are continuous).
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Let M be a regular surface, a map X : U → V where V is an
open set of M, satisfying the above conditions.

X is called a parametrization, and V is called a coordinate
chart (patch, neighborhood).

If X(u, v) = p, then (u, v) are called local coordinates of p.

So a regular surface is a set M in R3 which can be covered by
a family of coordinate charts.



Let M be a regular surface, a map X : U → V where V is an
open set of M, satisfying the above conditions.

X is called a parametrization, and V is called a coordinate
chart (patch, neighborhood).

If X(u, v) = p, then (u, v) are called local coordinates of p.

So a regular surface is a set M in R3 which can be covered by
a family of coordinate charts.



Let M be a regular surface, a map X : U → V where V is an
open set of M, satisfying the above conditions.

X is called a parametrization, and V is called a coordinate
chart (patch, neighborhood).

If X(u, v) = p, then (u, v) are called local coordinates of p.

So a regular surface is a set M in R3 which can be covered by
a family of coordinate charts.



Let M be a regular surface, a map X : U → V where V is an
open set of M, satisfying the above conditions.

X is called a parametrization, and V is called a coordinate
chart (patch, neighborhood).

If X(u, v) = p, then (u, v) are called local coordinates of p.

So a regular surface is a set M in R3 which can be covered by
a family of coordinate charts.



X has full rank



X is a homeomorphism



Example 1: graphs, z = f (x , y)



Example 2: spheres, {x2 + y 2 + z2 = 1}



Spherical coordinates



Stereographic projection



Graphs are regular surfaces

Proposition

Let f : U → R be a smooth function on an open set U ⊂ R2.
Then the graph of f defined by the following is a regular surface:

graph(f ) = {(x , y , f (x , y))| (x , y) ∈ U}.



Regular surfaces are graphs locally

Proposition

Let M be regular surface and let X : U → M be a coordinate
parametrization. Then for any p = (u0, v0) ∈ U there is a open set
V ⊂ U with p ∈ V such that X(V ) is a graph over an open set in
one of the coordinate plane.



Review on inverse function theorem

Let F : U ⊂ Rn → Rm be a smooth map from an open set U
to Rn, F (x) = y(x) = where x = (x1, . . . , xn),
y = (y1, . . . , ym). Let x0 = (x1

0 , . . . , x
n
0 ) ∈ U. The Jacobian

matrix of F at x0 is the m × n matrix

dFx0 =

(
∂y i

∂x j
(x0)

)
.

Theorem

(Inverse Function Theorem) Let F : U ⊂ Rn → Rn be a smooth
map. Suppose F (x0) = y0 and dFx0 is nonsingular. Then there
exist open sets U ⊃ V 3 x0 and W 3 y0, such that F is a
diffeomorphism from V to W . That is to say, F : V →W is
bijective and F−1 is also smooth on W .
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Proof of the inverse function theorem

Proof:

May assume that x0 = 0 = y0. Let A = dFx0 .

Then
F (x) = Ax + G (x),

G (x1)− G (x2) = o(|x1 − x2|) as x1, x2 → O.

Hence for any ε > 0, we can find δ > 0 such that if
x1, x2 ∈ B(0, δ) = {|x| < δ}, we have ,

|F (x1)− F (x2)| ≥ |A(x1 − x2)| − ε|x1 − x2|

From this we conclude that F is one-one in B(0, δ) if ε > 0 is
small enough.
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Proof (cont.)

Let y1 ∈ Rn. Want to find x so that F (x) = Ax + G (x) = y1.

∃x1,Ax1 = y1.(?) Inductively, ∃xn+1 with
Axn+1 = y1 − G (xn).

There is ρ > 0 such that if |y1| < ρ, then xn ∈ B(O, 12δ) and
xn → x ∈ B(O, δ). (Why?)
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Idea of proof



Proof

Proof:

(Sketch) Let X(u, v) = (x(u, v), y(u, v), z(u, v)). May
assume that at (u0, v0)

det

(
xu xv
yu yv

)
6= 0.

Let (x0, y0) = (x(u0, v0), y(u0, v0)). By the inverse function
theorem, there is a nbh of U1 of (u0, v0) and W of (x0, y0) so
that (u, v)→ (x , y) has a smooth inverse .

Then the image of U1 under X is of the form

(x , y)→(u(x , y), v(x , y))

→(x(u(x , y)), y(u(x , y)), z(u(x , y), v(x , y)))

= (x , y , f (x , y)).
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Regular value of a function

Proposition

Let U be an open set in R3 and let f : R3 → R be a smooth
function. Suppose a is a regular value of f . (That is: if
f (x , y , z) = a, then ∇f (x) 6= O.) Then

M = {(x , y , z) ∈ U| f (x) = a}

is a regular surface.



Proof

Proof:

(Sketch) Let (x0, y0, z0) ∈ M. May assume that fz 6= 0 at this
point.

Consider the map: F : U → R3 defined by
F (x , y , z) = (x , y , f (x , y , z)). Then the Jacobian matrix is
invertible at p = (x0, y0, z0).

Let F (x0, y0, z0) = (u0, v0, t0) = q, with t0 = a. Then there
exist nbh V of p and W of q so that F has a smooth inverse
F−1.

Now F−1(u, v , t) = (x , y , g(u, v , t)).

Let W1 = {(u, v)|(u, v , a) ∈W }. Then for (x , y , z) ∈ V ∩M,
F (x , y , z) = (x , y , a) = (u, v , g(u, v , a)) and so this set is the
graph of over (u, v).
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More examples: Quadratic surfaces



Torus



Surfaces of revolution



Ruled surfaces


