A subset $M \subset \mathbb{R}^3$ is said to be a regular surface if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X} : D \to M \cap U$ such that the following are true:

A subset $M \subset \mathbb{R}^3$ is said to be a regular surface if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X} : D \to M \cap U$ such that the following are true:

(rs1) X is smooth.

A subset $M \subset \mathbb{R}^3$ is said to be a regular surface if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X} : D \to M \cap U$ such that the following are true:

(rs1) X is smooth.

(rs2) $d\mathbf{X}$ is full rank: $\mathbf{X}_u = \frac{\partial \mathbf{X}}{\partial u}$ and $\mathbf{X}_v = \frac{\partial \mathbf{X}}{\partial v}$ are linearly independent, for any $(u, v) \in D$.

A subset $M \subset \mathbb{R}^3$ is said to be a regular surface if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X} : D \to M \cap U$ such that the following are true:

- (rs1) X is smooth.
- (rs2) $d\mathbf{X}$ is full rank: $\mathbf{X}_u = \frac{\partial \mathbf{X}}{\partial u}$ and $\mathbf{X}_v = \frac{\partial \mathbf{X}}{\partial v}$ are linearly independent, for any $(u, v) \in D$.
- (rs3) X is a homeomorphism from D onto M ∩ U. (That is: X is bijective, X and X⁻¹ are continuous).

伺 と く き と く き と

æ

X is called a *parametrization*, and V is called a *coordinate chart* (*patch*, *neighborhood*).

X is called a *parametrization*, and V is called a *coordinate chart* (*patch*, *neighborhood*).

If $\mathbf{X}(u, v) = p$, then (u, v) are called local coordinates of p.

X is called a *parametrization*, and V is called a *coordinate chart* (*patch*, *neighborhood*).

If X(u, v) = p, then (u, v) are called local coordinates of p. So a regular surface is a set M in \mathbb{R}^3 which can be covered by a family of coordinate charts.

X has full rank

X is a homeomorphism

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < 0

Example 1: graphs, z = f(x, y)

- < ロ > < 回 > < 注 > < 注 > 注 の < 0

Example 2: spheres, $\{x^2 + y^2 + z^2 = 1\}$

- * ロ > * 御 > * 注 > * 注 > … 注 … のへの

Spherical coordinates

- * ロ > * @ > * 注 > * 注 > … 注 … の < @

Stereographic projection

- * ロ > * 御 > * 注 > * 注 > … 注 … のへの

Proposition

Let $f : U \to \mathbb{R}$ be a smooth function on an open set $U \subset \mathbb{R}^2$. Then the graph of f defined by the following is a regular surface:

 $graph(f) = \{(x, y, f(x, y)) | (x, y) \in U\}.$

イロン イ部ン イヨン イヨン 三日

Proposition

Let M be regular surface and let $\mathbf{X} : U \to M$ be a coordinate parametrization. Then for any $p = (u_0, v_0) \in U$ there is a open set $V \subset U$ with $p \in V$ such that $\mathbf{X}(V)$ is a graph over an open set in one of the coordinate plane.

Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathbf{x}) = \mathbf{y}(\mathbf{x}) =$ where $\mathbf{x} = (x^1, \dots, x^n)$, $\mathbf{y} = (y^1, \dots, y^m)$. Let $\mathbf{x_0} = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at $\mathbf{x_0}$ is the $m \times n$ matrix

$$dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).$$

Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathbf{x}) = \mathbf{y}(\mathbf{x}) =$ where $\mathbf{x} = (x^1, \dots, x^n)$, $\mathbf{y} = (y^1, \dots, y^m)$. Let $\mathbf{x_0} = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at $\mathbf{x_0}$ is the $m \times n$ matrix

$$dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).$$

Theorem

(Inverse Function Theorem) Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni \mathbf{x}_0$ and $W \ni \mathbf{y}_0$, such that F is a diffeomorphism from V to W. That is to say, $F : V \to W$ is bijective and F^{-1} is also smooth on W.

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$.

⊡ ▶ < ≣ ▶

< ≣ >

Proof of the inverse function theorem

Proof:

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),$$

 $G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|) \text{ as } \mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{0}.$

イロト イヨト イヨト イヨト

Proof of the inverse function theorem

Proof:

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),$$

$$\begin{split} & G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|) \text{ as } \mathbf{x}_1, \mathbf{x}_2 \to \mathbf{O}. \\ & \text{Hence for any } \epsilon > 0, \text{ we can find } \delta > 0 \text{ such that if } \\ & \mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta\}, \text{ we have }, \end{split}$$

$$|F(\mathbf{x}_1) - F(\mathbf{x}_2)| \geq |A(\mathbf{x}_1 - \mathbf{x}_2)| - \epsilon |\mathbf{x}_1 - \mathbf{x}_2|$$

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then

$$F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),$$

$$\begin{split} & G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|) \text{ as } \mathbf{x}_1, \mathbf{x}_2 \to \mathbf{O}. \\ & \text{Hence for any } \epsilon > 0, \text{ we can find } \delta > 0 \text{ such that if } \\ & \mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta\}, \text{ we have }, \end{split}$$

$$|F(\mathbf{x}_1) - F(\mathbf{x}_2)| \ge |A(\mathbf{x}_1 - \mathbf{x}_2)| - \epsilon |\mathbf{x}_1 - \mathbf{x}_2|$$

From this we conclude that F is one-one in $B(\mathbf{0}, \delta)$ if $\epsilon > 0$ is small enough.

Let $\mathbf{y}_1 \in \mathbb{R}^n$. Want to find \mathbf{x} so that $F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}) = y_1$.

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Let $\mathbf{y}_1 \in \mathbb{R}^n$. Want to find \mathbf{x} so that $F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}) = y_1$. $\exists \mathbf{x}_1, A\mathbf{x}_1 = \mathbf{y}_1.$ (?) Inductively, $\exists \mathbf{x}_{n+1}$ with $A\mathbf{x}_{n+1} = \mathbf{y}_1 - G(\mathbf{x}_n)$.

・ 御 と ・ 臣 と ・ を 臣 と

2

Let $\mathbf{y}_1 \in \mathbb{R}^n$. Want to find \mathbf{x} so that $F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}) = y_1$. $\exists \mathbf{x}_1, A\mathbf{x}_1 = \mathbf{y}_1.$ (?) Inductively, $\exists \mathbf{x}_{n+1}$ with $A\mathbf{x}_{n+1} = \mathbf{y}_1 - G(\mathbf{x}_n)$. There is $\rho > 0$ such that if $|\mathbf{y}_1| < \rho$, then $\mathbf{x}_n \in B(\mathbf{0}, \frac{1}{2}\delta)$ and $\mathbf{x}_n \to \mathbf{x} \in B(\mathbf{0}, \delta)$. (Why?)

Idea of proof

- * ロ > * @ > * 注 > * 注 > - 注 - の & C

Proof:

(Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$\det \left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Proof:

(Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$\det \left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array} \right) \neq 0.$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Proof:

(Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$\det \left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array} \right) \neq 0.$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse.

Then the image of U_1 under **X** is of the form

$$\begin{aligned} &(x,y) \to (u(x,y), v(x,y)) \\ &\to (x(u(x,y)), y(u(x,y)), z(u(x,y), v(x,y))) \\ &= (x,y, f(x,y)). \end{aligned}$$

Proposition

Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f. (That is: if f(x, y, z) = a, then $\nabla f(x) \neq \mathbf{0}$.) Then

$$M = \{(x, y, z) \in U | f(x) = a\}$$

is a regular surface.

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

イロト イヨト イヨト イヨト

Consider the map: $F : U \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, f(x, y, z)). Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F : U \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, f(x, y, z)). Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} .

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F : U \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, f(x, y, z)). Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} .

イロト イヨト イヨト イヨト

Now
$$F^{-1}(u, v, t) = (x, y, g(u, v, t)).$$

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point.

Consider the map: $F : U \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, f(x, y, z)). Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$.

Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} .

Now $F^{-1}(u, v, t) = (x, y, g(u, v, t))$. Let $W_1 = \{(u, v) | (u, v, a) \in W\}$. Then for $(x, y, z) \in V \cap M$, F(x, y, z) = (x, y, a) = (u, v, g(u, v, a)) and so this set is the graph of over (u, v).

More examples: Quadratic surfaces

- * ロ > * 御 > * 注 > * 注 > … 注 … の & @

Torus

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● ● ●

Surfaces of revolution

- * ロ > * 御 > * 注 > * 注 > … 注 … のへの

Ruled surfaces

- < ロ > < 回 > < 臣 > < 臣 > 三臣 - の Q ()