Regular surfaces 1

1. Definitions

Definition 1. A subset $M \subset \mathbb{R}^3$ is said to be a *regular surface* if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X}: D \to M \cap U$ such that the following are true:

- (rs1) X is smooth.
- (rs2) d**X** is full rank: $X_u = \frac{\partial X}{\partial u}$ and $X_v = \frac{\partial X}{\partial v}$ are linearly independent, for any $(u, v) \in D$.
- (rs3) X is a homeomorphism from D onto $M \cap U$. (That is: X is bijective, **X** and \mathbf{X}^{-1} are continuous).

Let M be a regular surface, a map $X: U \to V$ where V is an open set of M , satisfying the above conditions. X is called a *parametrization*, and V is called a *coordinate chart (patch, neighborhood)*. If $\mathbf{X}(u, v) = p$, then (u, v) are called local coordinates of p. So a regular surface is a set \overline{M} in \mathbb{R}^3 which can be covered by a family of coordinate charts.

2. Examples

- Graphs: Let $M = \{(x, y, z) | z = f(x, y), (x, y) \in U \subset \mathbb{R}^2\}.$
- Sphere: $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

 \mathbb{S}^2 can be covered by the following family of coordinate charts.

(i) One of them is $\mathbf{X}(x, y) = (x, y, \sqrt{1 - (x^2 + y^2)})$, $(x, y) \in D$ which is the unit disk in \mathbb{R}^2 .

(ii) (Spherical coordinates) One of them is:

$$
\mathbf{X}(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

with $\{(\theta, \varphi) | 0 < \theta < \pi, 0 < \varphi < 2\pi\}.$

(iii) (Stereographic projection) The unit sphere M is considered as the set $x^2 + y^2 + (z - 1)^2 = 1$.

$$
\pi:M\setminus\{(0,0,2)=N\}\to\mathbb{R}^2\}
$$

so that $N, p, \pi(p)$ are on a straight line. Then $\mathbf{X} : \mathbb{R}^2 \to M \setminus \{N\}$ is a coordinate chart.

$$
\mathbf{X}(u,v) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}\right).
$$

Proposition 1. Let $f: U \to \mathbb{R}$ be a smooth function on an open set $U \subset \mathbb{R}^2$. Then the graph of f defined by the following is a regular surface:

$$
graph(f) = \{(x, y, f(x, y)) | (x, y) \in U\}.
$$

Proposition 2. Let M be regular surface and let $X: U \rightarrow M$ be a coordinate parametrization. Then for any $p = (u_0, v_0) \in U$ there is a open set $V \subset U$ with $p \in V$ such that $\mathbf{X}(V)$ is a graph over an open set in one of the coordinate plane.

Proof. (Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that (u_0, v_0)

$$
\det\left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.
$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse. Then the image of U_1 under **X** is of the form

$$
(x,y) \to (u(x,y), v(x,y)) \to (x(u(x,y)), y(u(x,y)), z(u(x,y), v(x,y))) = (x, y, f(x,y)).
$$

Proposition 3. Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f. (That is: if $f(x, y, z) = a$, then $\nabla f(x) \neq 0$.) Then

$$
M = \{(x, y, z) \in U | f(x) = a\}
$$

is a regular surface.

Proof. (Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point. Consider the map: $F: U \to \mathbb{R}^3$ defined by $F(x, y, z) =$ $(x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$. Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} . Now

$$
F^{-1}(u, v, t) = (x, y, g(u, v, t)).
$$

Let $W_1 = \{(u, v) | (u, v, a) \in W\}$. Then for $(x, y, z) \in V \cap M$, $F(x, y, z) =$ $(x, y, a) = (u, v, g(u, v, a))$ and so this set is the graph of over (u, v) . \Box

4. More examples

- Quadratic surfaces.
- torus: rotating a circle $(y a)^2 + z^2 = r^2$ about the z-axis. So

$$
z^{2} + \left(\sqrt{x^{2} + y^{2}} - a\right)^{2} = r^{2}.
$$

5. Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathbf{x}) = \mathbf{y}(\mathbf{x}) = \text{where } \mathbf{x} = (x^1, \dots, x^n), \mathbf{y} = (y^1, \dots, y^m).$ Let $\mathbf{x_0} = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at $\mathbf{x_0}$ is the $m \times n$ matrix

$$
dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).
$$

Theorem 1. (Inverse Function Theorem) Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni \mathbf{x}_0$ and $W \ni \mathbf{y}_0$, such that F is a diffeomorphism from V to W. That is to say, $F: V \to W$ is bijective and F^{-1} is also smooth on W.

Proof. (Sketch) May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$. Then $F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x})$

here $F(\mathbf{x})$ and x are considered as a column vectors with $G(\mathbf{x}_1)$ – $G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|)$ as $\mathbf{x}_1, \mathbf{x}_2 \to \mathbf{0}$. Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta, \text{ we have }$

$$
|F(\mathbf{x}_1) - F(\mathbf{x}_2)| \ge |A(\mathbf{x}_1 - \mathbf{x}_2)| - \epsilon |\mathbf{x}_1 - \mathbf{x}_2|
$$

From this we conclude that F is one-one in $B(\mathbf{0}, \delta)$. (Why?)

Let $y_1 \in \mathbb{R}^n$. Define

$$
\mathbf{x}_0 = A^{-1} \mathbf{y}_1.
$$

In general, define

$$
\mathbf{x}_{n+1} = A^{-1} \left(\mathbf{y}_1 - G(\mathbf{x}_n) \right)
$$

There is $\rho > 0$ such that if $|\mathbf{y}_1| < \rho$, then $\mathbf{x}_n \in B(0, \frac{1}{2})$ $(\frac{1}{2}\delta)$ and $\mathbf{x}_n \to \mathbf{x} \in$ $B(\mathbf{0}, \delta)$. (Why?)