Let M be a regular surface. Assume M is orientable with an orientation \mathbf{N} . Let $\alpha(s)$ be a smooth curve on M parametrized by arc length so that α' is the unit tangent. Let $\mathbf{n}(s)$ be the unit vector at $\alpha(s)$ such that $\mathbf{n} \in T_{\alpha(s)}(M)$ and such that $\{\alpha', \mathbf{n}, \mathbf{N}\}$ is positively oriented, i.e. $\mathbf{n} = \mathbf{N} \times \alpha'$.

Lemma

 α' is a linear combination of **n** and **N**: $\alpha'' = k_g \mathbf{n} + k_n \mathbf{N}$ for some smooth functions k_n and k_g on $\alpha(s)$.

Proof.

Since $\alpha'' \perp \alpha'$ and so it is a l.c. of **n**, **N**.

(1日) (日) (日)

Definition

As in the lemma, $k_n(s)$ is called the normal curvature of α at $\alpha(s)$ and $k_g(s)$ is called the geodesic curvature of α at $\alpha(s)$.

Facts:

1 k_n and k_g depend on the choice of **N**.

伺 と く き と く き と

Definition

As in the lemma, $k_n(s)$ is called the normal curvature of α at $\alpha(s)$ and $k_g(s)$ is called the geodesic curvature of α at $\alpha(s)$.

Facts:

- **1** k_n and k_g depend on the choice of **N**.
- We will see later that k_g is intrinsic: it depends only on the first fundamental form and the orientation of the surface.

伺い イヨト イヨト

Definition

As in the lemma, $k_n(s)$ is called the normal curvature of α at $\alpha(s)$ and $k_g(s)$ is called the geodesic curvature of α at $\alpha(s)$.

Facts:

- **1** k_n and k_g depend on the choice of **N**.
- We will see later that k_g is intrinsic: it depends only on the first fundamental form and the orientation of the surface.
- Let k be the curvature of α. Suppose k is not zero. Let N_α be the normal of α (recalled α" = kN_α). Then k_n = k⟨N_α, N⟩ = k cos θ where θ is the angle between N and N. If k = 0, then α" = 0 and k_n = k_g = 0.

(4回) (注) (注) (注) (注)

We first discuss normal curvature. The geometric meaning of the second fundamental form is the following:

Proposition

Let *M* be an orientable regular surface patch with an orientation **N**. Let III be the second fundamental form of *M* (w.r.t. **N**) and let $p \in M$. Suppose $\mathbf{v} \in T_p(M)$ with unit length and suppose $\alpha(s)$ is a smooth curve of *M* parametrized by arclength with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$. Then

$$k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})$$

where k_n is the normal curvature of α at $\alpha(0) = p$.

Proof: $k_n = \langle \alpha'', \mathbf{N} \rangle = -\langle \alpha', \frac{d}{dt}\mathbf{N} \rangle = \langle \mathbf{v}, \mathbf{S}_p(\mathbf{v}) \rangle$ at t = 0. From this the result follows.

(4回) (注) (注) (注) (注)

Corollary

With the same notation as in the proposition, we have the following: Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of α and β at p are equal.

Hence in order to find all normal curvatures, we only need to consider the so-called normal section.

• Suppose M is a plane. All normal curvatures are zero

æ

- Suppose M is a plane. All normal curvatures are zero
- Let *M* be the unit sphere. Let $\mathbf{N} = (x, y, z)$ for $(x, y, x) \in M$. The the normal curvature at a point is -1.

- Suppose M is a plane. All normal curvatures are zero
- Let *M* be the unit sphere. Let $\mathbf{N} = (x, y, z)$ for $(x, y, x) \in M$. The the normal curvature at a point is -1.

Now consider the circle on the unit sphere with z = r, 0 < r < 1. The curve is $\alpha(s) = (\rho \cos(\rho^{-1}s), \rho \sin(\rho^{-1}s), r)$ with $r^2 + \rho^2 = 1$. $\alpha'' = (-\rho^{-1}\cos(\rho^{-1}s), -\rho^{-1}\sin(\rho^{-1}s), 0)$. The curvature $k = \rho^{-1}$. $\langle \alpha'', N \rangle = -1 = \rho^{-1}\cos\theta$, where θ is the angle between α'' and **N**.

- 本部 ト イヨト - - ヨ

- Suppose M is a plane. All normal curvatures are zero
- Let *M* be the unit sphere. Let $\mathbf{N} = (x, y, z)$ for $(x, y, x) \in M$. The the normal curvature at a point is -1.

Now consider the circle on the unit sphere with z = r, 0 < r < 1. The curve is $\alpha(s) = (\rho \cos(\rho^{-1}s), \rho \sin(\rho^{-1}s), r)$ with $r^2 + \rho^2 = 1$. $\alpha'' = (-\rho^{-1}\cos(\rho^{-1}s), -\rho^{-1}\sin(\rho^{-1}s), 0)$. The curvature $k = \rho^{-1}$. $\langle \alpha'', N \rangle = -1 = \rho^{-1}\cos\theta$, where θ is the angle between α'' and **N**.

• Consider the curve $(t, 0, t^4)$ on the x - z plane. Rotate this about z-axis we get a surface M. The normal curvature at p = (0, 0, 0) is zero by considering the normal section. Hence $S_p = 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

- Suppose M is a plane. All normal curvatures are zero
- Let *M* be the unit sphere. Let $\mathbf{N} = (x, y, z)$ for $(x, y, x) \in M$. The the normal curvature at a point is -1.

Now consider the circle on the unit sphere with z = r, 0 < r < 1. The curve is $\alpha(s) = (\rho \cos(\rho^{-1}s), \rho \sin(\rho^{-1}s), r)$ with $r^2 + \rho^2 = 1$. $\alpha'' = (-\rho^{-1}\cos(\rho^{-1}s), -\rho^{-1}\sin(\rho^{-1}s), 0)$. The curvature $k = \rho^{-1}$. $\langle \alpha'', N \rangle = -1 = \rho^{-1}\cos\theta$, where θ is the angle between α'' and **N**.

- Consider the curve $(t, 0, t^4)$ on the x z plane. Rotate this about z-axis we get a surface M. The normal curvature at p = (0, 0, 0) is zero by considering the normal section. Hence $S_p = 0$.
- Normal curvatures at a point on the cylinder will change from 1 to 0 if we use N pointing to the axis.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Basic facts on symmetric bilinear form

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space and let *B* be a *symmetric* bilinear form on *V*.

- Let Q be the corresponding quadratic form, $Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$
- A be the corresponding self-adjoint operator:

 $\langle A(\mathbf{v}), \mathbf{w} \rangle = B(\mathbf{v}, \mathbf{w}).$

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space of dimension n and let B be a symmetric bilinear form. Then there is an orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that B is diagonalized. Namely, $B(\mathbf{v}_i, \mathbf{v}_j) = \lambda_i \delta_{ij}$. \mathbf{v}_i is an eigenvector of A with eigenvalue λ_i : $A(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$. Moreover, if $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then $Q(\mathbf{v}) = \sum_{i=1}^n \lambda_i (x^i)^2$.

Sketch of proof

We just prove the case that n = 2. Let S be the set in V with $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then $B(\mathbf{v}, \mathbf{v})$ attains maximum on S at some **v**. Let $\mathbf{v}_1 \in S$ be such that

$$B(\mathbf{v}_1,\mathbf{v}_1)=\max_{\mathbf{v}\in S}B(\mathbf{v},\mathbf{v}).$$

Let $\mathbf{v}_2 \in S$ such that $\mathbf{v}_1 \perp \mathbf{v}_2$. It is sufficient to prove that $B(\mathbf{v}_1, \mathbf{v}_2) = 0$. Let $t \in \mathbb{R}$ and let

$$f(t) = \frac{B(\mathbf{v}_1 + t\mathbf{v}_2, \mathbf{v}_1 + t\mathbf{v}_2)}{||\mathbf{v}_1 + t\mathbf{v}_2||^2}$$

Then f'(0) = 0. Hence

$$0 = 2B(\mathbf{v}_1, \mathbf{v}_2) - 2B(\mathbf{v}_1, \mathbf{v}_1) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

= 2B(\mathbf{v}_1, \mathbf{v}_2).

・吊り ・ヨン ・ヨン ・ヨ

Proof, cont.

Note that
$$\lambda_2 = B(\mathbf{v}_2, \mathbf{v}_2) = \min_{\mathbf{v} \in S} B(\mathbf{v}, \mathbf{v})$$
.
Now $\langle A(\mathbf{v}_1), \mathbf{v}_1 \rangle = B(\mathbf{v}_1, \mathbf{v}_1) = \lambda_1 = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_1 \rangle$;
 $\langle A(\mathbf{v}_1), \mathbf{v}_2 \rangle = B(\mathbf{v}_1, \mathbf{v}_2) = 0 = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$. Hence

$$\langle A(\mathbf{v}_1) - \lambda_1 \mathbf{v}_1, \mathbf{v}_i
angle = 0$$

for i = 1, 2. Hence $A(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$. Let $\mathbf{v} = \sum_{i=1}^{2} x^{i} \mathbf{v}_{i}$, then

$$Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$$
$$= \sum_{i,j=1}^{2} x^{i} x^{j} B(\mathbf{v}_{i}, \mathbf{v}_{j})$$
$$= \sum_{i=1}^{n} \lambda_{i} (x^{i})^{2}.$$

æ

Let M be an orientable regular surface with orientation **N**.

Definition

Let \mathbf{e}_1 , \mathbf{e}_2 be an orthonormal basis on $T_p(M)$ which diagonalizes \mathbb{II}_p with eigenvalues k_1 and k_2 . Then k_1 , k_2 are called the principal curvatures of M at p and \mathbf{e}_1 , \mathbf{e}_2 are called the principal directions. Suppose $k_1 \leq k_2$ then all normal curvature k must satisfies $k_1 \leq k \leq k_2$.

Proposition

With the above notations, if $k_1 = k_2 = k$, then every direction is a principal direction and in this case, $S_p = k$ **id**. (In this case, the point is said to be umbilical.) Moreover, the Gaussian curvature and the mean curvature are given by $K(p) = k_1 k_2$, and $H(p) = \frac{1}{2}(k_1 + k_2)$.