
Normal curvatures

Let M be a regular surface. Assume M is orientable with an
orientation N. Let α(s) be a smooth curve on M parametrized by
arc length so that α′ is the unit tangent. Let n(s) be the unit
vector at α(s) such that n ∈ Tα(s)(M) and such that {α′,n,N} is
positively oriented, i.e. n = N× α′.

Lemma

α′ is a linear combination of n and N: α′′ = kgn + knN for some
smooth functions kn and kg on α(s).

Proof.

Since α′′ ⊥ α′ and so it is a l.c. of n,N.

Curvature of curves on surfaces and the second fundamental form



Normal curvatures, cont.

Definition

As in the lemma, kn(s) is called the normal curvature of α at α(s)
and kg (s) is called the geodesic curvature of α at α(s).

Facts:

1 kn and kg depend on the choice of N.

2 We will see later that kg is intrinsic: it depends only on the
first fundamental form and the orientation of the surface.

3 Let k be the curvature of α. Suppose k is not zero. Let Nα

be the normal of α (recalled α′′ = kNα). Then
kn = k〈Nα,N〉 = k cos θ where θ is the angle between N and
N. If k = 0, then α′′ = 0 and kn = kg = 0.
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Normal curvatures and second fundamental form

We first discuss normal curvature. The geometric meaning of the
second fundamental form is the following:

Proposition

Let M be an orientable regular surface patch with an orientation
N. Let II be the second fundamental form of M (w.r.t. N) and let
p ∈ M. Suppose v ∈ Tp(M) with unit length and suppose α(s) is
a smooth curve of M parametrized by arclength with α(0) = p and
α′(0) = v. Then

kn(0) = IIp(v, v)

where kn is the normal curvature of α at α(0) = p.

Proof: kn = 〈α′′,N〉 = −〈α′, d
dt N〉 = 〈v,Sp(v)〉 at t = 0. From

this the result follows.
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Normal curvatures and second fundamental form, cont.

Corollary

With the same notation as in the proposition, we have the
following: Let α and β be two regular curves parametrized by arc
length passing through p. Suppose α and β are tangent at p.
Then the normal curvatures of α and β at p are equal.

Hence in order to find all normal curvatures, we only need to
consider the so-called normal section.
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Examples

Suppose M is a plane. All normal curvatures are zero

Let M be the unit sphere. Let N = (x , y , z) for (x , y , x) ∈ M.
The the normal curvature at a point is -1.

Now consider the circle on the unit sphere with z = r ,
0 < r < 1. The curve is α(s) = (ρ cos(ρ−1s), ρ sin(ρ−1s), r)
with r2 + ρ2 = 1. α′′ = (−ρ−1 cos(ρ−1s),−ρ−1 sin(ρ−1s), 0).
The curvature k = ρ−1. 〈α′′,N〉 = −1 = ρ−1 cos θ, where θ is
the angle between α′′ and N.

Consider the curve (t, 0, t4) on the x − z plane. Rotate this
about z-axis we get a surface M. The normal curvature at
p = (0, 0, 0) is zero by considering the normal section. Hence
Sp = 0.

Normal curvatures at a point on the cylinder will change from
1 to 0 if we use N pointing to the axis.
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Basic facts on symmetric bilinear form

Let (V , 〈· , ·〉) be a finite dimensional inner product space and let
B be a symmetric bilinear form on V .

Let Q be the corresponding quadratic form, Q(v) = B(v, v)

A be the corresponding self-adjoint operator:
〈A(v),w) = B(v,w).

Theorem

Let (V , 〈· , ·〉) be a finite dimensional inner product space of
dimension n and let B be a symmetric bilinear form. Then there is
an orthonormal basis v1, . . . , vn such that B is diagonalized.
Namely, B(vi , vj) = λiδij . vi is an eigenvector of A with eigenvalue
λi : A(vi ) = λivi . Moreover, if v =

∑n
i=1 x ivi , then

Q(v) =
∑n

i=1 λi (x i )2.
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Sketch of proof

We just prove the case that n = 2. Let S be the set in V with
||v||2 = 〈v, v〉 = 1. Then B(v, v) attains maximum on S at some
v. Let v1 ∈ S be such that

B(v1, v1) = max
v∈S

B(v, v).

Let v2 ∈ S such that v1 ⊥ v2. It is sufficient to prove that
B(v1, v2) = 0. Let t ∈ R and let

f (t) =
B(v1 + tv2, v1 + tv2)

||v1 + tv2||2
.

Then f ′(0) = 0. Hence

0 =2B(v1, v2)− 2B(v1, v1)〈v1, v2〉
=2B(v1, v2).
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Proof, cont.

Note that λ2 = B(v2, v2) = minv∈S B(v, v).
Now 〈A(v1), v1〉 = B(v1, v1) = λ1 = λ1〈v1, v1〉;
〈A(v1), v2〉 = B(v1, v2) = 0 = 〈v1, v2〉. Hence

〈A(v1)− λ1v1, vi 〉 = 0

for i = 1, 2. Hence A(v1) = λ1v1.
Let v =

∑2
i=1 x ivi , then

Q(v) =B(v, v)

=
2∑

i ,j=1

x ix jB(vi , vj)

=
n∑

i=1

λi (x i )2.
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Principal curvatures

Let M be an orientable regular surface with orientation N.

Definition

Let e1, e2 be an orthonormal basis on Tp(M) which diagonalizes
IIp with eigenvalues k1 and k2. Then k1, k2 are called the principal
curvatures of M at p and e1, e2 are called the principal directions.
Suppose k1 ≤ k2 then all normal curvature k must satisfies
k1 ≤ k ≤ k2.

Proposition

With the above notations, if k1 = k2 = k, then every direction is a
principal direction and in this case, Sp = k id. (In this case, the
point is said to be umbilical.) Moreover, the Gaussian curvature
and the mean curvature are given by K (p) = k1k2, and
H(p) = 1

2(k1 + k2).
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