Principal curvatures

Let M be an orientable regular surface with orientation N.

Definition

Let e1, e be an orthonormal basis on T,(M) which diagonalizes
I, with eigenvalues ky and ky. Then kq, ko are called the principal
curvatures of M at p and e, e are called the principal directions.
Suppose ki < ko then all normal curvature k must satisfies

ki < k < k.




Principle curvatures and Gaussian curvature, mean
curvature

Proposition

With the above notations, if ki = ky = k, then every direction is a
principal direction and in this case, S, = kid. (In this case, the
point is said to be umbilical.) Moreover, the Gaussian curvature
and the mean curvature are given by K(p) = kika, and

H(p) = %(kl + k2). In particular,

ki ko = H+ /H2 — K.




Local structure of the surface in terms of principal

curvatures

Let p be a point in a regular surface patch. Then it is called
1. Elliptic if det(S,) > 0.
2. Hyperbolic if det(S,) < 0
3. Parabolic if det(Sp) = 0 but Sp # 0.
4. Planar if S, = 0.




Local structure of the surface in terms of principal

curvatures, cont.

Let M be a regular surface and p € M. Let e, ex be the principal
directions with principal curvature ki, ko with N = e; x e. We
choose the coordinates in R3 as follows: p is the origin,

e; =(1,0,0), e = (0,1,0). M is graph over xy-plane near p.
That is: there is an open set p € V so that

M ={(x,y,2)| z=f(x,y),(x,y) € U C R?}

where U being open in R?.



Local structure of the surface in terms of principal

curvatures, cont.

Near p = (0,0,0), the surface is the graph of

1
f(x,y) = 5 (ki + kay?) + 0(x% + y2).

Hence locally, the regular surface patch is a
o elliptic paraboloid if p is elliptic;
@ hyperbolic paraboloid if p is hyperbolic;

@ parabolic cylinder if p is parabolic;

@ planar point if S, = 0.




Proof: M can be parametrized as X(x, y) = (x,y, f(x,y)) locally.
p =(0,0,0) implies that f(0,0) = 0. Note that

X« =(1,0,£),X, =(0,1,1,),Xux = (0,0, fix), Xy = Xy =

(07 0, ny)’xyy = (0707 fyy) N = (1 + fx2 + f};)i%(_fﬂ _fy? 1)-

N = (0,0,1), implies that £,(0,0) =0, f,(0,0) = 0, we have

1
f(x,y) = E(fXX(O, 0)x2 + 2£,(0,0)xy + £,,,(0,0)y?) 4+ o(x* + y?).

0
Sp(el) = —aN = (fXX, fxy,O) = klel.

Similar for 3. So at p, fix = ki, £, =0, f,, = ko. Hence the
result.



Regular surface where all points are umbilical

Proposition

Let X : U — R3 be an orientable regular surface, which is
connected. Suppose every point in M is umbilical. Then M is
contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, X(u, v) with
(u,v) € U which is connected. Let N be a unit normal vector field
on M and let S be the shape operator. Then Sp(v) = Av for any
v € T,(M) for some function A(p). We write A = A(u, v). This is
a smooth function. Now

N, = S,(Xy) = AX,.

Hence —N,, = A\, X, + AX,y. Similarly, =N, = A, X, + AX,.
Hence A\, = A, = 0 everywhere (Why?). So A is constant in this
coordinate chart. Hence X is constant on M. (Why?).



Case 1: A\=0. Then N, =N, =0. So N = a, which is a
constant vector. Then

(X(u,v) — X(ug, vo), N), = (X4, N) = 0.

Similar for derivative w.r.t. v. Hence (X(u,v) — X(uo, vo),N) =0
and M is contained in a plane. (Why?)
Case 2: )\ is a nonzero constant. Then

1 1
X+ <N), =X, + <N, =0.
(X ++N) +5

Similar for derivative w.r.t. v. So X + %N is a constant vector a,
say. Then |[X —a| =1/|A|. So M is contained a the sphere of
radius 1/|\| with center at a. (Why?)



Gauss map, Gauss image and Gaussian curvature

@ Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M — S? which is the unit sphere in R3.



Gauss map, Gauss image and Gaussian curvature

@ Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M — S? which is the unit sphere in R3.

o At g € N(p) € S?, we use the unit normal vector N(p) and we
identify T,(M) to T4(S?).



Gauss map, Gauss image and Gaussian curvature

@ Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M — S? which is the unit sphere in R3.

o At g € N(p) € S?, we use the unit normal vector N(p) and we
identify T,(M) to T4(S?).

o Let X(u!, v?) ((u}, u?) € U C R?) be a parametrization of M
with orientation determined by N.



Gauss map, Gauss image and Gaussian curvature

@ Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M — S? which is the unit sphere in R3.

o At g € N(p) € S?, we use the unit normal vector N(p) and we
identify T,(M) to T4(S?).

o Let X(u!, v?) ((u}, u?) € U C R?) be a parametrization of M
with orientation determined by N.

o Then N : U — S?, where N(u?, u?) = N(X(u!, u?)). Then
dN = —8&. If The Gaussian curvature is nonzero at a point p,
then N can be considered as a parametrization of S? near q.



Area of Gauss image

Proposition

Let p € M. Suppose K(p) # 0. Let B, be a sequence of open sets
with B, — p in the sense that sup,cp, [P —q| — 0 as n — co. Let

A, be the area of B, and A, be the area of the Gauss image n(B,)
of B,. Then

lim 27 = |K(p)!.

n—o0 n




Proof

May assume that B, is the image of U, C U of the parametrization
X, so that p <+ (0,0). Then U, — (0,0) if B, — p. So

A, = // X1 % Xo|dutdu?,
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Proof

May assume that B, is the image of U, C U of the parametrization
X, so that p <+ (0,0). Then U, — (0,0) if B, — p. So

A, = // X1 % Xo|dutdu?,

/Z,, = // |N1 X N2|du1du2.
Un

Now dN = —S§, so
N; x N, = det(—S)X1 x Xo = KX;1 X X». Hence

A, ffun |K||X1 x Xa|dutdu?
A, Iy, X1 x Xa|du du?

— [K(p)I-

Ol




Meaning of K > 0,K <0

@ Since K = det(S) = det(—dN), K > 0 means N is
orientation preserving, and K < 0 means orientation reversing.
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@ Since K = det(S) = det(—dN), K > 0 means N is
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//MKdA

can be considered as the signed area of the Gauss image.

@ Hence
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@ M is a plane. The Gauss image is a point and the Gaussian
curvature is zero. The area of the Gauss image is zero.

@ Let M be the circular cylinder. The Gaussian curvature is
zero. That Gauss image is a circle. The area of the Gauss
image is zero.

@ Let M be the sphere of radius R. The Gaussian curvature if
1/R?. The Gauss image is the whole unit sphere. So the area
of the Gauss image is 4.

o Let M be the torus. Then

cosu

r(a+ rcosu)

Hence

2w 27
// KdA = / / cost -r(a+ rcosu)dudv = 0.
r(a+ rcosu)



