Principal curvatures

Let M be an orientable regular surface with orientation N.

Definition

Let \mathbf{e}_1 , \mathbf{e}_2 be an orthonormal basis on $T_p(M)$ which diagonalizes \mathbb{H}_p with eigenvalues k_1 and k_2 . Then k_1 , k_2 are called the principal curvatures of M at p and \mathbf{e}_1 , \mathbf{e}_2 are called the principal directions. Suppose $k_1 \leq k_2$ then all normal curvature k must satisfies $k_1 \leq k \leq k_2$.

Principle curvatures and Gaussian curvature, mean curvature

Proposition

With the above notations, if $k_1 = k_2 = k$, then every direction is a principal direction and in this case, $\mathcal{S}_p = k\mathbf{id}$. (In this case, the point is said to be umbilical.) Moreover, the Gaussian curvature and the mean curvature are given by $K(p) = k_1k_2$, and $H(p) = \frac{1}{2}(k_1 + k_2)$. In particular,

$$k_1, k_2 = H \pm \sqrt{H^2 - K}.$$

Local structure of the surface in terms of principal curvatures

Definition

Let p be a point in a regular surface patch. Then it is called

- 1. Elliptic if $\det(\mathcal{S}_p) > 0$.
- 2. Hyperbolic if $\det(S_p) < 0$
- 3. Parabolic if $det(S_p) = 0$ but $S_p \neq 0$.
- 4. Planar if $S_p = 0$.

Local structure of the surface in terms of principal curvatures, cont.

Let M be a regular surface and $p \in M$. Let $\mathbf{e}_1, \mathbf{e}_2$ be the principal directions with principal curvature k_1, k_2 with $\mathbf{N} = \mathbf{e}_1 \times \mathbf{e}_2$. We choose the coordinates in \mathbb{R}^3 as follows: p is the origin, $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$. M is graph over xy-plane near p. That is: there is an open set $p \in V$ so that

$$M = \{(x, y, z) | z = f(x, y), (x, y) \in U \subset \mathbb{R}^2 \}$$

where U being open in \mathbb{R}^2 .

Local structure of the surface in terms of principal curvatures, cont.

Proposition

Near p = (0,0,0), the surface is the graph of

$$f(x,y) = \frac{1}{2}(k_1x^2 + k_2y^2) + o(x^2 + y^2).$$

Hence locally, the regular surface patch is a

- elliptic paraboloid if p is elliptic;
- hyperbolic paraboloid if p is hyperbolic;
- parabolic cylinder if p is parabolic;
- planar point if $S_p = 0$.

Proof: M can be parametrized as $\mathbf{X}(x,y) = (x,y,f(x,y))$ locally. p = (0,0,0) implies that f(0,0) = 0. Note that $\mathbf{X}_x = (1,0,f_x), \mathbf{X}_y = (0,1,f_y), \mathbf{X}_{xx} = (0,0,f_{xx}), \mathbf{X}_{xy} = \mathbf{X}_{yx} = (0,0,f_{xy}), \mathbf{X}_{yy} = (0,0,f_{yy}).$ $\mathbf{N} = (1+f_x^2+f_y^2)^{-\frac{1}{2}}(-f_x,-f_y,1).$ $\mathbf{N} = (0,0,1)$, implies that $f_x(0,0) = 0, f_y(0,0) = 0$, we have

$$f(x,y) = \frac{1}{2}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2) + o(x^2 + y^2).$$

$$S_p(\mathbf{e}_1) = -\frac{\partial}{\partial x}\mathbf{N} = (f_{xx}, f_{xy}, 0) = k_1\mathbf{e}_1.$$

Similar for \mathbf{e}_2 . So at p, $f_{xx} = k_1, f_{xy} = 0, f_{yy} = k_2$. Hence the result.

Regular surface where all points are umbilical

Proposition

Let $X: U \to \mathbb{R}^3$ be an orientable regular surface, which is connected. Suppose every point in M is umbilical. Then M is contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, $\mathbf{X}(u, v)$ with $(u, v) \in U$ which is connected. Let \mathbf{N} be a unit normal vector field on M and let \mathcal{S} be the shape operator. Then $\mathcal{S}_p(\mathbf{v}) = \lambda \mathbf{v}$ for any $\mathbf{v} \in T_p(M)$ for some function $\lambda(p)$. We write $\lambda = \lambda(u, v)$. This is a smooth function. Now

$$-\mathbf{N}_{u}=\mathcal{S}_{p}(\mathbf{X}_{u})=\lambda\mathbf{X}_{u}.$$

Hence $-\mathbf{N}_{uv} = \lambda_v \mathbf{X}_u + \lambda \mathbf{X}_{uv}$. Similarly, $-\mathbf{N}_{vu} = \lambda_u \mathbf{X}_v + \lambda \mathbf{X}_{vu}$. Hence $\lambda_u = \lambda_v = 0$ everywhere (Why?). So λ is constant in this coordinate chart. Hence λ is constant on M. (Why?).

Proof, cont.

Case 1: $\lambda \equiv 0$. Then $\mathbf{N}_u = \mathbf{N}_v = 0$. So $\mathbf{N} = \mathbf{a}$, which is a constant vector. Then

$$\langle \mathbf{X}(u,v) - \mathbf{X}(u_0,v_0), \mathbf{N} \rangle_u = \langle \mathbf{X}_u, \mathbf{N} \rangle = 0.$$

Similar for derivative w.r.t. v. Hence $\langle \mathbf{X}(u,v) - \mathbf{X}(u_0,v_0), \mathbf{N} \rangle \equiv 0$ and M is contained in a plane. (Why?)

Case 2: λ is a nonzero constant. Then

$$(\mathbf{X} + \frac{1}{\lambda}\mathbf{N})_u = \mathbf{X}_u + \frac{1}{\lambda}\mathbf{N}_u = 0.$$

Similar for derivative w.r.t. v. So $\mathbf{X} + \frac{1}{\lambda}\mathbf{N}$ is a constant vector \mathbf{a} , say. Then $|\mathbf{X} - \mathbf{a}| = 1/|\lambda|$. So M is contained a the sphere of radius $1/|\lambda|$ with center at \mathbf{a} . (Why?)

• Let M be an orientable regular surface and let ${\bf N}$ be a unit normal vector field. We also denote the Gauss map by ${\bf N}$. That is ${\bf N}: M \to \mathbb{S}^2$ which is the unit sphere in \mathbb{R}^3 .

- Let M be an orientable regular surface and let $\mathbf N$ be a unit normal vector field. We also denote the Gauss map by $\mathbf N$. That is $\mathbf N: M \to \mathbb S^2$ which is the unit sphere in $\mathbb R^3$.
- At $q \in \mathbf{N}(p) \in \mathbb{S}^2$, we use the unit normal vector $\mathbf{N}(p)$ and we identify $T_p(M)$ to $T_q(\mathbb{S}^2)$.

- Let M be an orientable regular surface and let $\mathbf N$ be a unit normal vector field. We also denote the Gauss map by $\mathbf N$. That is $\mathbf N: M \to \mathbb S^2$ which is the unit sphere in $\mathbb R^3$.
- At $q \in \mathbf{N}(p) \in \mathbb{S}^2$, we use the unit normal vector $\mathbf{N}(p)$ and we identify $T_p(M)$ to $T_q(\mathbb{S}^2)$.
- Let $\mathbf{X}(u^1, u^2)$ $((u^1, u^2) \in U \subset \mathbb{R}^2)$ be a parametrization of M with orientation determined by \mathbf{N} .

- Let M be an orientable regular surface and let \mathbf{N} be a unit normal vector field. We also denote the Gauss map by \mathbf{N} . That is $\mathbf{N}: M \to \mathbb{S}^2$ which is the unit sphere in \mathbb{R}^3 .
- At $q \in \mathbf{N}(p) \in \mathbb{S}^2$, we use the unit normal vector $\mathbf{N}(p)$ and we identify $T_p(M)$ to $T_q(\mathbb{S}^2)$.
- Let $\mathbf{X}(u^1, u^2)$ $((u^1, u^2) \in U \subset \mathbb{R}^2)$ be a parametrization of M with orientation determined by \mathbf{N} .
- Then $\mathbf{N}: U \to \mathbb{S}^2$, where $\mathbf{N}(u^1, u^2) = \mathbf{N}(\mathbf{X}(u^1, u^2))$. Then $d\mathbf{N} = -\mathcal{S}$. If The Gaussian curvature is nonzero at a point p, then \mathbf{N} can be considered as a parametrization of \mathbb{S}^2 near q.

Area of Gauss image

Proposition

Let $p \in M$. Suppose $K(p) \neq 0$. Let B_n be a sequence of open sets with $B_n \to p$ in the sense that $\sup_{q \in B_n} |p - q| \to 0$ as $n \to \infty$. Let A_n be the area of B_n and \widetilde{A}_n be the area of the Gauss image $\mathbf{n}(B_n)$ of B_n . Then

$$\lim_{n\to\infty}\frac{\widetilde{A}_n}{A_n}=|K(p)|.$$

Proof.

May assume that B_n is the image of $U_n \subset U$ of the parametrization **X**, so that $p \leftrightarrow (0,0)$. Then $U_n \to (0,0)$ if $B_n \to p$. So

$$A_n = \iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2,$$

Proof.

May assume that B_n is the image of $U_n \subset U$ of the parametrization **X**, so that $p \leftrightarrow (0,0)$. Then $U_n \to (0,0)$ if $B_n \to p$. So

$$A_n = \iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2,$$

$$\widetilde{A}_n = \iint_{U_2} |\mathbf{N}_1 \times \mathbf{N}_2| du^1 du^2.$$

Proof.

May assume that B_n is the image of $U_n \subset U$ of the parametrization **X**, so that $p \leftrightarrow (0,0)$. Then $U_n \to (0,0)$ if $B_n \to p$. So

$$A_n = \iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2,$$

$$\widetilde{A}_n = \iint_{U_n} |\mathbf{N}_1 \times \mathbf{N}_2| du^1 du^2.$$

Now
$$d\mathbf{N} = -\mathcal{S}$$
, so

$$\mathbf{N}_1 imes \mathbf{N}_2 = \det(-\mathcal{S})\mathbf{X}_1 imes \mathbf{X}_2 = \mathcal{K}\mathbf{X}_1 imes \mathbf{X}_2.$$
 Hence

$$\frac{\widetilde{A}_n}{A_n} = \frac{\iint_{U_n} |K| |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2}{\iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2} \to |K(p)|.$$

Meaning of K > 0, K < 0

• Since $K = \det(S) = \det(-d\mathbf{N})$, K > 0 means \mathbf{N} is orientation preserving, and K < 0 means orientation reversing.

Meaning of K > 0, K < 0

- Since $K = \det(S) = \det(-d\mathbf{N})$, K > 0 means \mathbf{N} is orientation preserving, and K < 0 means orientation reversing.
- Hence

$$\iint_{M} KdA$$

can be considered as the signed area of the Gauss image.

• *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.

- *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.
- Let *M* be the circular cylinder. The Gaussian curvature is zero. That Gauss image is a circle. The area of the Gauss image is zero.

- *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.
- Let *M* be the circular cylinder. The Gaussian curvature is zero. That Gauss image is a circle. The area of the Gauss image is zero.
- Let M be the sphere of radius R. The Gaussian curvature if $1/R^2$. The Gauss image is the whole unit sphere. So the area of the Gauss image is 4π .

- *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.
- Let *M* be the circular cylinder. The Gaussian curvature is zero. That Gauss image is a circle. The area of the Gauss image is zero.
- Let M be the sphere of radius R. The Gaussian curvature if $1/R^2$. The Gauss image is the whole unit sphere. So the area of the Gauss image is 4π .
- Let *M* be the torus. Then

$$K = \frac{\cos u}{r(a + r\cos u)}.$$

Hence

$$\iint_M KdA = \int_0^{2\pi} \int_0^{2\pi} \frac{\cos u}{r(a+r\cos u)} \cdot r(a+r\cos u) du dv = 0.$$