
Principal curvatures

Let M be an orientable regular surface with orientation N.

Definition

Let e1, e2 be an orthonormal basis on Tp(M) which diagonalizes
IIp with eigenvalues k1 and k2. Then k1, k2 are called the principal
curvatures of M at p and e1, e2 are called the principal directions.
Suppose k1 ≤ k2 then all normal curvature k must satisfies
k1 ≤ k ≤ k2.



Principle curvatures and Gaussian curvature, mean
curvature

Proposition

With the above notations, if k1 = k2 = k, then every direction is a
principal direction and in this case, Sp = k id. (In this case, the
point is said to be umbilical.) Moreover, the Gaussian curvature
and the mean curvature are given by K (p) = k1k2, and
H(p) = 1

2(k1 + k2). In particular,

k1, k2 = H ±
√

H2 − K .



Local structure of the surface in terms of principal
curvatures

Definition

Let p be a point in a regular surface patch. Then it is called

1. Elliptic if det(Sp) > 0.

2. Hyperbolic if det(Sp) < 0

3. Parabolic if det(Sp) = 0 but Sp 6= 0.

4. Planar if Sp = 0.



Local structure of the surface in terms of principal
curvatures, cont.

Let M be a regular surface and p ∈ M. Let e1, e2 be the principal
directions with principal curvature k1, k2 with N = e1 × e2. We
choose the coordinates in R3 as follows: p is the origin,
e1 = (1, 0, 0), e2 = (0, 1, 0). M is graph over xy -plane near p.
That is: there is an open set p ∈ V so that

M = {(x , y , z)| z = f (x , y), (x , y) ∈ U ⊂ R2}

where U being open in R2.



Local structure of the surface in terms of principal
curvatures, cont.

Proposition

Near p = (0, 0, 0), the surface is the graph of

f (x , y) =
1

2
(k1x2 + k2y2) + o(x2 + y2).

Hence locally, the regular surface patch is a

elliptic paraboloid if p is elliptic;

hyperbolic paraboloid if p is hyperbolic;

parabolic cylinder if p is parabolic;

planar point if Sp = 0.



Proof

Proof: M can be parametrized as X(x , y) = (x , y , f (x , y)) locally.
p = (0, 0, 0) implies that f (0, 0) = 0. Note that
Xx = (1, 0, fx),Xy = (0, 1, fy ),Xxx = (0, 0, fxx),Xxy = Xyx =

(0, 0, fxy ),Xyy = (0, 0, fyy ). N = (1 + f 2
x + f 2

y )−
1
2 (−fx ,−fy , 1).

N = (0, 0, 1), implies that fx(0, 0) = 0, fy (0, 0) = 0, we have

f (x , y) =
1

2
(fxx(0, 0)x2 + 2fxy (0, 0)xy + fyy (0, 0)y2) + o(x2 + y2).

Sp(e1) = − ∂

∂x
N = (fxx , fxy , 0) = k1e1.

Similar for e2. So at p, fxx = k1, fxy = 0, fyy = k2. Hence the
result.



Regular surface where all points are umbilical

Proposition

Let X : U → R3 be an orientable regular surface, which is
connected. Suppose every point in M is umbilical. Then M is
contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, X(u, v) with
(u, v) ∈ U which is connected. Let N be a unit normal vector field
on M and let S be the shape operator. Then Sp(v) = λv for any
v ∈ Tp(M) for some function λ(p). We write λ = λ(u, v). This is
a smooth function. Now

−Nu = Sp(Xu) = λXu.

Hence −Nuv = λvXu + λXuv . Similarly, −Nvu = λuXv + λXvu.
Hence λu = λv = 0 everywhere (Why?). So λ is constant in this
coordinate chart. Hence λ is constant on M. (Why?).



Proof, cont.

Case 1: λ ≡ 0. Then Nu = Nv = 0. So N = a, which is a
constant vector. Then

〈X(u, v)− X(u0, v0),N〉u = 〈Xu,N〉 = 0.

Similar for derivative w.r.t. v . Hence 〈X(u, v)− X(u0, v0),N〉 ≡ 0
and M is contained in a plane. (Why?)
Case 2: λ is a nonzero constant. Then

(X +
1

λ
N)u = Xu +

1

λ
Nu = 0.

Similar for derivative w.r.t. v . So X + 1
λN is a constant vector a,

say. Then |X− a| = 1/|λ|. So M is contained a the sphere of
radius 1/|λ| with center at a. (Why?)



Gauss map, Gauss image and Gaussian curvature

Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M → S2 which is the unit sphere in R3.

At q ∈ N(p) ∈ S2, we use the unit normal vector N(p) and we
identify Tp(M) to Tq(S2).

Let X(u1, u2) ((u1, u2) ∈ U ⊂ R2) be a parametrization of M
with orientation determined by N.

Then N : U → S2, where N(u1, u2) = N(X(u1, u2)). Then
dN = −S. If The Gaussian curvature is nonzero at a point p,
then N can be considered as a parametrization of S2 near q.



Gauss map, Gauss image and Gaussian curvature

Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M → S2 which is the unit sphere in R3.

At q ∈ N(p) ∈ S2, we use the unit normal vector N(p) and we
identify Tp(M) to Tq(S2).

Let X(u1, u2) ((u1, u2) ∈ U ⊂ R2) be a parametrization of M
with orientation determined by N.

Then N : U → S2, where N(u1, u2) = N(X(u1, u2)). Then
dN = −S. If The Gaussian curvature is nonzero at a point p,
then N can be considered as a parametrization of S2 near q.



Gauss map, Gauss image and Gaussian curvature

Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M → S2 which is the unit sphere in R3.

At q ∈ N(p) ∈ S2, we use the unit normal vector N(p) and we
identify Tp(M) to Tq(S2).

Let X(u1, u2) ((u1, u2) ∈ U ⊂ R2) be a parametrization of M
with orientation determined by N.

Then N : U → S2, where N(u1, u2) = N(X(u1, u2)). Then
dN = −S. If The Gaussian curvature is nonzero at a point p,
then N can be considered as a parametrization of S2 near q.



Gauss map, Gauss image and Gaussian curvature

Let M be an orientable regular surface and let N be a unit
normal vector field. We also denote the Gauss map by N.
That is N : M → S2 which is the unit sphere in R3.

At q ∈ N(p) ∈ S2, we use the unit normal vector N(p) and we
identify Tp(M) to Tq(S2).

Let X(u1, u2) ((u1, u2) ∈ U ⊂ R2) be a parametrization of M
with orientation determined by N.

Then N : U → S2, where N(u1, u2) = N(X(u1, u2)). Then
dN = −S. If The Gaussian curvature is nonzero at a point p,
then N can be considered as a parametrization of S2 near q.



Area of Gauss image

Proposition

Let p ∈ M. Suppose K (p) 6= 0. Let Bn be a sequence of open sets
with Bn → p in the sense that supq∈Bn

|p − q| → 0 as n→∞. Let

An be the area of Bn and Ãn be the area of the Gauss image n(Bn)
of Bn. Then

lim
n→∞

Ãn

An
= |K (p)|.



Proof

Proof.

May assume that Bn is the image of Un ⊂ U of the parametrization
X, so that p ↔ (0, 0). Then Un → (0, 0) if Bn → p. So

An =

∫∫
Un

|X1 × X2|du1du2,

Ãn =

∫∫
Un

|N1 ×N2|du1du2.

Now dN = −S, so
N1 ×N2 = det(−S)X1 × X2 = KX1 × X2. Hence

Ãn

An
=

∫∫
Un
|K ||X1 × X2|du1du2∫∫

Un
|X1 × X2|du1du2

→ |K (p)|.
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Meaning of K > 0,K < 0

Since K = det(S) = det(−dN), K > 0 means N is
orientation preserving, and K < 0 means orientation reversing.

Hence ∫∫
M

KdA

can be considered as the signed area of the Gauss image.
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Examples

M is a plane. The Gauss image is a point and the Gaussian
curvature is zero. The area of the Gauss image is zero.

Let M be the circular cylinder. The Gaussian curvature is
zero. That Gauss image is a circle. The area of the Gauss
image is zero.

Let M be the sphere of radius R. The Gaussian curvature if
1/R2. The Gauss image is the whole unit sphere. So the area
of the Gauss image is 4π.

Let M be the torus. Then

K =
cos u

r(a + r cos u)
.

Hence∫∫
M

KdA =

∫ 2π

0

∫ 2π

0

cos u

r(a + r cos u)
· r(a + r cos u)dudv = 0.
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