Minimal surfaces

Definition

A regular surface M is said to be minimal if the mean curvature of
M is identically zero.




Minimal surfaces in isothermal coordinates

Defintion: Let X(u, v) be a local parametrization of a regular
surface. X is said to be isothermal if |X,| = |X,| = A, and
(Xu, Xy) = 0.
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To check whether a surface is minimal, the following fact is
useful.



Minimal surfaces in isothermal coordinates

Defintion: Let X(u, v) be a local parametrization of a regular
surface. X is said to be isothermal if |X,| = |X,| = A, and

(Xy, Xy) =0.
To check whether a surface is minimal, the following fact is
useful.

Let X(u, v) be an isothermal coordinate parametrization of a
regular surface M. Let N = X, x X, /|X, x X,|. Then

Xuu + Xow = 202HN

where H is the mean curvature.
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Minimal surfaces and complex variables

Corollary: Suppose X(u, v) is an an isothermal coordinate
parametrization of a regular surface M. M is a minimal
surface if and only if X,, + X,, = 0. (That is: each
coordinate function is harmonic as a function of u, v.)



Minimal surfaces and complex variables

Corollary: Suppose X(u, v) is an an isothermal coordinate
parametrization of a regular surface M. M is a minimal
surface if and only if X,, + X,, = 0. (That is: each
coordinate function is harmonic as a function of u, v.)
Remark: Let X(u, v) be a coordinate parametrization of M.
Let o1 = x, — \/jlxw 2 = yu — \/jYVa ¢$3 =2z — \/jlzv-
Then

(i) X is isothermal if and only if ¢3 + ¢3 + ¢3 = 0.

(if) M is minimal if and only if ¢; are analytic for i = 1,2, 3.



@ A plane is a minimal surface.



@ A plane is a minimal surface.

@ Let M be the catenoid: the surface of revolution by rotating
the curve (acosh v, 0, v) about the z-axis. Take a =1

X(u, v) = (cosh v cos u, cosh vsin u, v).

Then E = G = cosh® v, F = 0.



@ A plane is a minimal surface.

@ Let M be the catenoid: the surface of revolution by rotating
the curve (acosh v, 0, v) about the z-axis. Take a =1

X(u, v) = (cosh v cos u, cosh vsin u, v).
Then E = G = cosh®v, F =0.
Xuu = (—(cosh v cos u, — cosh v sin u, 0);

X, = (cosh v cos u, cosh v sin u, 0).

So X,, + X, = 0. Catenoid is minimal.



Surfaces of revolution which are minimal

Consider the surface of revolution given by
X(u,v) = (F(v) cos u, F(v)sin u, g(v)); (F)2 + (&) = 1
It is minimal if and only if

0 1 l_g/_’_ f(g’f” _g//f/)
2 f ’

Suppose g’ # 0 somewhere, then v can be expressed as a function
of z and f(v) = ¢(g(v)). We have ¢ means derivative w.r.t. z etc.

f/ — (égc f// — &(g/)2 + ¢5g//.

So we have

0=—¢g +¢ <g’(<b(g’)2 +¢g") — g”ég’) = —g' + ¢d(g')’



Surfaces of revolution which are minimal, cont.

So )
~1+¢9(g")* = 0.
Since (/)2 + (g')> =1, so (g")?(1 + ¢?) = 1, and we have

¢

14 ¢2

Check, ¢ = acosh((z + ¢)/a) are solutions.
Hence g’ # 0 and the surface is part of a catenoid, or g’ == 0,
then the surface is a part of a plane.



First variational formula for area: Minimal surfaces are

critical points of the areas functional

Let X : U C R? — R3 be a coordinate parametrization of a regular
surface M. Let D be a compact domain in U and let

Q = X(D) C M. Let h(u,v) be a smooth function on D. Let

N = X, x X, /|X, x X, | be the unit normal of the surface. Define:

Y(u,v;t) = X(u,v)+ th(u,v)n(u,v).

There exists € > 0 such that for each fixed t with |t| < ¢,
Y (u, v;t) represent a parametrized regular surface. (Y(u,v;t) is
called a normal variation of Q.)




Let Y, = X, + t(hyn + hn,), etc. So

Y, xY, =X, x X, + t[(hyn+ hn,) x X, + X, x (hyn+ hn,)]
+ t?(hyn 4 hn,) x (hyn + hn,)
=Xy X Xy, + R(u, v, t).

Since [X, x X,| > C; for some C; > 0 on D and |R| < €G, for
some C, > 0 on D independent of €. So Y, x Y, # 0 if ¢ is small
enough.



First variational formula, cont.

Let € > 0 be as above. Define A(t) to be the area of

M(t) = {Y(u, v, t)|(u,v) € D}.

Theorem (First variation of area)

dA
dt

=2 // hHdA
t=0 Q

where H is the mean curvature of M. Here for any function ¢ on

//Q¢>dA = //Dq5|Xu><Xv|dudv.




Proof: Let E(u,v,t) = (Y (u,v,t),Y,(u,v,t)) etc. Let
Eo(u, v) = E(u,v,0) etc (which are the coefficients of the first
fundamental form of X

)-
E(u,v,t) =Eo(u,v) + 2th(u, v)(Ny, X,,) + O(t?)
=Eo(u, v) — 2th(u, v)e(u, v) + O(t?);
F(u,v,t) =Fo(u, v) + 2th(u, v)(N,, X,) + O(t?)
=Fo(u, v) — 2th(u, v)f(u, v) + O(t?);
G(u,v,t) =Go(u,v) + 2th(u, v
( (

=Go(u, v) — 2th(u, v

(N, X,) + O(t?)

)
)g(u, v) + O(t?),

where e, f, g are the coefficients of the second fundamental form
of X. Hence

EG — F? = EyGo — F¢ — 2t (eGy — 2fFg + gGo) + O(t?).



First variational formula, cont.

Hence

://\f(EG—Fz)dudv
// \/EOGO—FZdudv—t// —2fFo+ 8%,
\/EoGo — F2

+ 0(t?)

// \/mdudvzt// hHAA + O(t2).




First variational formula, cont.

Hence

:/¢wc—#wwv

— 2fFy + &G,
//\/EOGO—F2dudv—t// 0 8%,
JEoGo — F2

+0(t%)
[/v@MbFMMVH//hMM+O()

e Corollary: A’(0) = 0 for all normal variation of @ if and only if
H =0 on Q. Actually, a regular surface M is minimal if and
only if A’(0) = 0 for all normal variation of M with compact
support: i.e. any variation by fN where f has satisfies f # 0
is a compact set in M.




Construction of bump function

To prove the theorem, we need to construct a so-called bump
function, starting with

¢(t):{ 0, <o

e ¢, ift>0.

Consider the function:

where
P1(t) = ¢(2+ t)(2 — 1), Yo(t) = $(t — 1) + ¢(—1 — 1)
Then ®(t) satisfies ®(t) > 0, and

{ 1, if |t <1;

*®() =10, if|t|>2



A general result

Lemma
Let h be a smooth function defined in a domain U C R?. Suppose

//fhdudv:O
U

for all smooth function f with compact support in U, then h = 0.

v

A reference for minimal surfaces: Osserman, A survey of minimal
surfaces.



