Minimal surfaces

Definition

A regular surface M is said to be minimal if the mean curvature of M is identically zero.

For a graph
$$\mathbf{X}(x,y)=(x,y,f(x,y)).$$
 $\mathbf{X}_x=(1,0,f_x),$ $\mathbf{X}_y=(0,1,f_y),$ $\mathbf{X}_{xx}=(0,0,f_{xx}),$ $\mathbf{X}_{xy}=\mathbf{X}_{xx}=(0,0,f_{xy}),$ $\mathbf{X}_{yy}=(0,0,f_{yy}).$ $\mathbf{N}=(1+f_x^2+f_y^2)^{-\frac{1}{2}}(-f_x,-f_y,1).$ So $E=1+f_x^2,$ $G=1+f_y^2,$ $F=f_xf_y;$ $e=(1+f_x^2+f_y^2)^{-\frac{1}{2}}f_{xx},$ $f=(1+f_x^2+f_y^2)^{-\frac{1}{2}}f_{xy},$ $g=(1+f_x^2+f_y^2)^{-\frac{1}{2}}f_{yy}.$ Minimal if

$$0 = H = \frac{1}{2} \cdot \frac{(1 + f_y^2)f_{xx} - 2f_x f_y f_{xy} + (1 + f_x^2)f_{yy}}{(1 + f_x^2 + f_y^2)^{\frac{3}{2}}}.$$

Or

$$\operatorname{div}(\frac{\nabla f}{1+|\nabla f|^2})=0.$$

Minimal surfaces in isothermal coordinates

Defintion: Let $\mathbf{X}(u, v)$ be a local parametrization of a regular surface. \mathbf{X} is said to be isothermal if $|\mathbf{X}_u| = |\mathbf{X}_v| = \lambda$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

Minimal surfaces in isothermal coordinates

Defintion: Let $\mathbf{X}(u, v)$ be a local parametrization of a regular surface. \mathbf{X} is said to be isothermal if $|\mathbf{X}_u| = |\mathbf{X}_v| = \lambda$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

To check whether a surface is minimal, the following fact is useful.

Minimal surfaces in isothermal coordinates

Defintion: Let $\mathbf{X}(u, v)$ be a local parametrization of a regular surface. \mathbf{X} is said to be isothermal if $|\mathbf{X}_u| = |\mathbf{X}_v| = \lambda$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

To check whether a surface is minimal, the following fact is useful.

Proposition

Let $\mathbf{X}(u, v)$ be an isothermal coordinate parametrization of a regular surface M. Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v/|\mathbf{X}_u \times \mathbf{X}_v|$. Then

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = 2\lambda^2 H \mathbf{N}$$

where H is the mean curvature.

Proof

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

Proof

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

$$\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.$$

Proof

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

$$\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.$$

So

$$\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = 0.$$

Similarly, $\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_v \rangle = 0$.

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

$$\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.$$

So

$$\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = 0.$$

Similarly, $\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{v} \rangle = 0$.

Hence

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = \langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{N} \rangle \mathbf{N} = (e + g)\mathbf{N} = 2\lambda^2 H \mathbf{N},$$

Proof.

$$\langle \mathbf{X}_{uu}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} = \lambda_{u}.$$

$$\langle \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = -\langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = -\lambda_{u}.$$

So

$$\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = 0.$$

Similarly, $\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{v} \rangle = 0$.

Hence

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = \langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{N} \rangle \mathbf{N} = (e + g)\mathbf{N} = 2\lambda^2 H \mathbf{N},$$

because

$$H = \frac{1}{2} \frac{eG - 2fF + Eg}{EG - F^2} = \frac{1}{2} \frac{e + g}{\lambda^2}.$$

Minimal surfaces and complex variables

Corollary: Suppose $\mathbf{X}(u, v)$ is an an isothermal coordinate parametrization of a regular surface M. M is a minimal surface if and only if $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. (That is: each coordinate function is harmonic as a function of u, v.)

Minimal surfaces and complex variables

Corollary: Suppose $\mathbf{X}(u,v)$ is an an isothermal coordinate parametrization of a regular surface M. M is a minimal surface if and only if $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. (That is: each coordinate function is harmonic as a function of u,v.) Remark: Let $\mathbf{X}(u,v)$ be a coordinate parametrization of M. Let $\phi_1 = x_u - \sqrt{-1}x_v$, $\phi_2 = y_u - \sqrt{-1}y_v$, $\phi_3 = z_u - \sqrt{-1}z_v$. Then

- (i) **X** is isothermal if and only if $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0$.
- (ii) M is minimal if and only if ϕ_i are analytic for i = 1, 2, 3.

Examples

• A plane is a minimal surface.

Examples

- A plane is a minimal surface.
- Let M be the catenoid: the surface of revolution by rotating the curve $(a \cosh v, 0, v)$ about the z-axis. Take a = 1

$$X(u, v) = (\cosh v \cos u, \cosh v \sin u, v).$$

Then $E = G = \cosh^2 v$, F = 0.

Examples

- A plane is a minimal surface.
- Let M be the catenoid: the surface of revolution by rotating the curve $(a \cosh v, 0, v)$ about the z-axis. Take a = 1

$$X(u, v) = (\cosh v \cos u, \cosh v \sin u, v).$$

Then
$$E = G = \cosh^2 v$$
, $F = 0$.

$$\mathbf{X}_{uu} = (-(\cosh v \cos u, -\cosh v \sin u, 0);$$

$$\mathbf{X}_{vv} = (\cosh v \cos u, \cosh v \sin u, 0).$$

So
$$\mathbf{X}_{\mu\mu} + \mathbf{X}_{\nu\nu} = 0$$
. Catenoid is minimal.

Surfaces of revolution which are minimal

Consider the surface of revolution given by

$$\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)); (f')^2 + (g')^2 = 1$$

It is minimal if and only if

$$0 = H = \frac{1}{2} \frac{-g' + f(g'f'' - g''f')}{f}.$$

Suppose $g' \neq 0$ somewhere, then v can be expressed as a function of z and $f(v) = \phi(g(v))$. We have $\dot{\phi}$ means derivative w.r.t. z etc.

$$f' = \dot{\phi}g', \quad f'' = \ddot{\phi}(g')^2 + \dot{\phi}g''.$$

So we have

$$0 = -g' + \phi \left(g' (\ddot{\phi}(g')^2 + \dot{\phi}g'') - g'' \dot{\phi}g' \right) = -g' + \phi \ddot{\phi}(g')^3$$

Surfaces of revolution which are minimal, cont.

So

$$-1 + \phi \ddot{\phi}(g')^2 = 0.$$

Since $(f')^2 + (g')^2 = 1$, so $(g')^2(1 + \dot{\phi}^2) = 1$, and we have

$$\frac{\phi\ddot{\phi}}{1+\dot{\phi}^2}=1.$$

Check, $\phi = a \cosh((z+c)/a)$ are solutions.

Hence $g' \neq 0$ and the surface is part of a catenoid, or $g' \equiv 0$, then the surface is a part of a plane.

First variational formula for area: Minimal surfaces are critical points of the areas functional

Let $\mathbf{X}: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a coordinate parametrization of a regular surface M. Let \overline{D} be a compact domain in U and let

 $Q = \mathbf{X}(D) \subset M$. Let h(u, v) be a smooth function on \overline{D} . Let

 ${f N}={f X}_u imes{f X}_v/|{f X}_u imes{f X}_v|$ be the unit normal of the surface. Define:

$$\mathbf{Y}(u,v;t) = \mathbf{X}(u,v) + th(u,v)\mathbf{n}(u,v).$$

Lemma

There exists $\epsilon > 0$ such that for each fixed t with $|t| < \epsilon$, $\mathbf{Y}(u, v; t)$ represent a parametrized regular surface. ($\mathbf{Y}(u, v; t)$ is called a **normal variation** of \overline{Q} .)

Let
$$\mathbf{Y}_{u} = \mathbf{X}_{u} + t(h_{u}\mathbf{n} + h\mathbf{n}_{u})$$
, etc. So
$$\mathbf{Y}_{u} \times \mathbf{Y}_{v} = \mathbf{X}_{u} \times \mathbf{X}_{v} + t\left[(h_{u}\mathbf{n} + h\mathbf{n}_{u}) \times \mathbf{X}_{v} + \mathbf{X}_{u} \times (h_{v}\mathbf{n} + h\mathbf{n}_{v})\right] + t^{2}(h_{u}\mathbf{n} + h\mathbf{n}_{u}) \times (h_{u}\mathbf{n} + h\mathbf{n}_{u})$$
$$= \mathbf{X}_{u} \times \mathbf{X}_{v} + R(u, v, t).$$

Since $|\mathbf{X}_u \times \mathbf{X}_v| \geq C_1$ for some $C_1 > 0$ on \overline{D} and $|R| \leq \epsilon C_2$ for some $C_2 > 0$ on \overline{D} independent of ϵ . So $\mathbf{Y}_u \times \mathbf{Y}_v \neq \mathbf{0}$ if ϵ is small enough.

First variational formula, cont.

Let $\epsilon > 0$ be as above. Define A(t) to be the area of

$$M(t) = \{ \mathbf{Y}(u, v, t) | (u, v) \in \overline{D} \}.$$

Theorem (First variation of area)

$$\left. \frac{dA}{dt} \right|_{t=0} = -2 \iint_{\overline{Q}} hHdA$$

where H is the mean curvature of M. Here for any function ϕ on \overline{D} ,

$$\iint_{\overline{Q}} \phi dA := \iint_{\overline{D}} \phi |\mathbf{X}_{u} \times \mathbf{X}_{v}| du dv.$$

Proof: Let $E(u, v, t) = \langle \mathbf{Y}_u(u, v, t), \mathbf{Y}_u(u, v, t) \rangle$ etc. Let $E_0(u, v) = E(u, v, 0)$ etc (which are the coefficients of the first fundamental form of \mathbf{X}).

$$E(u, v, t) = E_{0}(u, v) + 2th(u, v)\langle \mathbf{N}_{u}, \mathbf{X}_{u} \rangle + O(t^{2})$$

$$= E_{0}(u, v) - 2th(u, v)e(u, v) + O(t^{2});$$

$$F(u, v, t) = F_{0}(u, v) + 2th(u, v)\langle \mathbf{N}_{u}, \mathbf{X}_{v} \rangle + O(t^{2})$$

$$= F_{0}(u, v) - 2th(u, v)f(u, v) + O(t^{2});$$

$$G(u, v, t) = G_{0}(u, v) + 2th(u, v)\langle \mathbf{N}_{v}, \mathbf{X}_{v} \rangle + O(t^{2})$$

$$= G_{0}(u, v) - 2th(u, v)g(u, v) + O(t^{2}),$$

where e, f, g are the coefficients of the second fundamental form of \mathbf{X} . Hence

$$EG - F^2 = E_0 G_0 - F_0^2 - 2t (eG_0 - 2fF_0 + gG_0) + O(t^2).$$

First variational formula, cont.

Hence

$$A(t) = \iint_{\overline{D}} \sqrt{(EG - F^2)} du dv$$

$$= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - t \iint_{\overline{D}} h \frac{eG_0 - 2fF_0 + gG_0}{\sqrt{E_0 G_0 - F_0^2}} du dv$$

$$+ O(t^2)$$

$$= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - 2t \iint_{\overline{D}} h H dA + O(t^2).$$

First variational formula, cont.

Hence

$$\begin{split} A(t) &= \iint_{\overline{D}} \sqrt{(EG - F^2)} du dv \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - t \iint_{\overline{D}} h \frac{eG_0 - 2fF_0 + gG_0}{\sqrt{E_0 G_0 - F_0^2}} du dv \\ &+ O(t^2) \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - 2t \iint_{\overline{Q}} h H dA + O(t^2). \end{split}$$

• Corollary: A'(0) = 0 for all normal variation of \overline{Q} if and only if $H \equiv 0$ on Q. Actually, a regular surface M is minimal if and only if A'(0) = 0 for all normal variation of M with compact support: i.e. any variation by $f\mathbf{N}$ where f has satisfies $\overline{f \neq 0}$ is a compact set in M.

Construction of bump function

To prove the theorem, we need to construct a so-called *bump* function, starting with

$$\phi(t) = \begin{cases} 0, & \text{if } t \leq 0; \\ e^{-\frac{1}{t}}, & \text{if } t > 0. \end{cases}$$

Consider the function:

$$\Phi(t) = \frac{\psi_1(t)}{\psi_1(t) + \psi_2(t)}$$

where

$$\psi_1(t) = \phi(2+t)\phi(2-t), \psi_2(t) = \phi(t-1) + \phi(-1-t).$$

Then $\Phi(t)$ satisfies $\Phi(t) \geq 0$, and

$$\Phi(t) = \left\{ egin{array}{ll} 1, & ext{if } |t| \leq 1; \ 0, & ext{if } |t| \geq 2. \end{array}
ight.$$

A general result

Lemma

Let h be a smooth function defined in a domain $U \subset \mathbb{R}^2$. Suppose

$$\iint_U f \, h du dv = 0$$

for all smooth function f with compact support in U, then $h \equiv 0$.

A reference for minimal surfaces: Osserman, A survey of minimal surfaces.

Constant mean curvature surfaces

Let M be an regular surface which is the boundary of a domain. Let \mathbf{N} be a unit normal vector field. Consider the variation given by variational vector field $f\mathbf{N}$: Namely in local coordinate patch:

$$\mathbf{Y}(u,v;t) = \mathbf{X}(u,v) + tf\mathbf{N}(u,v).$$

Or in general $\mathbf{Y} = \mathbf{X} + tf\mathbf{N}$ where \mathbf{X} is the position vector of a point in M.

Variation with constraint

We want to compute the variation of the area under the constraint the the volume is fixed. As before, let A(t) be the area of the surface $\mathbf{Y}(t)$. Then we have

$$A'(0) = -2 \iint_M fHdA.$$

Volume constraint

Let V(t) be the volume contained insider $\mathbf{Y}(t)$. So f must be such that V'(0) = 0.

Let $\mathbf{X}(u,v)$ be a local parametrization from $U \to M \subset \mathbb{R}^3$. Consider the map

$$\mathbf{F}(u,v,w) = \mathbf{X}(u,v) + w\mathbf{N}(u,v) = (x,y,z).$$

Then the volume between $\mathbf{X}(u, v)$ and $\mathbf{Y}(u, v, t)$ is given by

$$V(t) = \iint_U \left(\int_0^{tf(u,v)} J \, dw \right) du dv$$

where

$$J = \det \begin{pmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{pmatrix}$$

$$= \mathbf{F}_u \times \mathbf{F}_v \cdot \mathbf{F}_w$$

$$= (\mathbf{X}_u + w\mathbf{N}_u) \times (\mathbf{X}_v + w\mathbf{N}_v) \cdot \mathbf{N}$$

$$= \mathbf{X}_u \times \mathbf{X}_v \cdot \mathbf{N} + O(w)$$

$$= |\mathbf{X}_u \times \mathbf{X}_v| + O(w).$$

Hence

$$V(t) = t \iint_U f |\mathbf{X}_u imes \mathbf{X}_v| dudv + O(t^2)$$
 and $V'(0) = \iint_U f |\mathbf{X}_u imes \mathbf{X}_v| dudv.$

Theorem

Let M be as above. Suppose M is a critical point of the area functional under normal variation preserving volume. Then M has constant curvature.

Proof.

From above, we have

$$\iint_{M} fHdA = 0$$

for all f satisfying $\iint_M f dA = 0$. Hence H must be constant.

Question: Is it possible that H = 0?

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

• Roulette of a circle gives a circular cylinder.

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

- Roulette of a circle gives a circular cylinder.
- Roulette of a parabola gives a catenoid.

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

- Roulette of a circle gives a circular cylinder.
- Roulette of a parabola gives a catenoid.
- Roulette of an ellipse is called an undulary and it gives an unduloid.

Theorem

(Delaunay). A complete immersed surface of revolution of constant mean curvature is a roulette of a conic.

- Roulette of a circle gives a circular cylinder.
- Roulette of a parabola gives a catenoid.
- Roulette of an ellipse is called an undulary and it gives an unduloid.
- Roulette of a hyperbola is called a nodary and it gives a nodoid.