Minimal surfaces

Definition

A regular surface M is said to be minimal if the mean curvature of
M is identically zero.
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Minimal surfaces in isothermal coordinates

Defintion: Let X(u, v) be a local parametrization of a regular
surface. X is said to be isothermal if |X,| = |X,| = A, and
(Xu, Xy) = 0.
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useful.



Minimal surfaces in isothermal coordinates

Defintion: Let X(u, v) be a local parametrization of a regular
surface. X is said to be isothermal if |X,| = |X,| = A, and

(Xy, Xy) =0.
To check whether a surface is minimal, the following fact is
useful.

Let X(u, v) be an isothermal coordinate parametrization of a
regular surface M. Let N = X, x X, /|X, x X,|. Then

Xuu + Xow = 202HN

where H is the mean curvature.
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Minimal surfaces and complex variables

Corollary: Suppose X(u, v) is an an isothermal coordinate
parametrization of a regular surface M. M is a minimal
surface if and only if X,, + X,, = 0. (That is: each
coordinate function is harmonic as a function of u, v.)



Minimal surfaces and complex variables

Corollary: Suppose X(u, v) is an an isothermal coordinate
parametrization of a regular surface M. M is a minimal
surface if and only if X,, + X,, = 0. (That is: each
coordinate function is harmonic as a function of u, v.)
Remark: Let X(u, v) be a coordinate parametrization of M.
Let o1 = x, — \/jlxw 2 = yu — \/jYVa ¢$3 =2z — \/jlzv-
Then

(i) X is isothermal if and only if ¢3 + ¢3 + ¢3 = 0.

(if) M is minimal if and only if ¢; are analytic for i = 1,2, 3.



@ A plane is a minimal surface.



@ A plane is a minimal surface.

@ Let M be the catenoid: the surface of revolution by rotating
the curve (acosh v, 0, v) about the z-axis. Take a =1

X(u, v) = (cosh v cos u, cosh vsin u, v).

Then E = G = cosh® v, F = 0.



@ A plane is a minimal surface.

@ Let M be the catenoid: the surface of revolution by rotating
the curve (acosh v, 0, v) about the z-axis. Take a =1

X(u, v) = (cosh v cos u, cosh vsin u, v).
Then E = G = cosh®v, F =0.
Xuu = (—(cosh v cos u, — cosh v sin u, 0);

X, = (cosh v cos u, cosh v sin u, 0).

So X,, + X, = 0. Catenoid is minimal.



Surfaces of revolution which are minimal

Consider the surface of revolution given by
X(u,v) = (F(v) cos u, F(v)sin u, g(v)); (F)2 + (&) = 1
It is minimal if and only if

0 1 l_g/_’_ f(g’f” _g//f/)
2 f ’

Suppose g’ # 0 somewhere, then v can be expressed as a function
of z and f(v) = ¢(g(v)). We have ¢ means derivative w.r.t. z etc.

f/ — (égc f// — &(g/)2 + ¢5g//.

So we have

0=—¢g +¢ <g’(<b(g’)2 +¢g") — g”ég’) = —g' + ¢d(g')’



Surfaces of revolution which are minimal, cont.

So )
~1+¢9(g")* = 0.
Since (/)2 + (g')> =1, so (g")?(1 + ¢?) = 1, and we have

¢

14 ¢2

Check, ¢ = acosh((z + ¢)/a) are solutions.
Hence g’ # 0 and the surface is part of a catenoid, or g’ == 0,
then the surface is a part of a plane.



First variational formula for area: Minimal surfaces are

critical points of the areas functional

Let X : U C R? — R3 be a coordinate parametrization of a regular
surface M. Let D be a compact domain in U and let

Q = X(D) C M. Let h(u,v) be a smooth function on D. Let

N = X, x X, /|X, x X, | be the unit normal of the surface. Define:

Y(u,v;t) = X(u,v)+ th(u,v)n(u,v).

There exists € > 0 such that for each fixed t with |t| < ¢,
Y (u, v;t) represent a parametrized regular surface. (Y(u,v;t) is
called a normal variation of Q.)




Let Y, = X, + t(hyn + hn,), etc. So

Y, xY, =X, x X, + t[(hyn+ hn,) x X, + X, x (hyn+ hn,)]
+ t?(hyn 4 hn,) x (hyn + hn,)
=Xy X Xy, + R(u, v, t).

Since [X, x X,| > C; for some C; > 0 on D and |R| < €G, for
some C, > 0 on D independent of €. So Y, x Y, # 0 if ¢ is small
enough.



First variational formula, cont.

Let € > 0 be as above. Define A(t) to be the area of

M(t) = {Y(u, v, t)|(u,v) € D}.

Theorem (First variation of area)

dA
dt

=2 // hHdA
t=0 Q

where H is the mean curvature of M. Here for any function ¢ on

//Q¢>dA = //Dq5|Xu><Xv|dudv.




Proof: Let E(u,v,t) = (Y (u,v,t),Y,(u,v,t)) etc. Let
Eo(u, v) = E(u,v,0) etc (which are the coefficients of the first
fundamental form of X

)-
E(u,v,t) =Eo(u,v) + 2th(u, v)(Ny, X,,) + O(t?)
=Eo(u, v) — 2th(u, v)e(u, v) + O(t?);
F(u,v,t) =Fo(u, v) + 2th(u, v)(N,, X,) + O(t?)
=Fo(u, v) — 2th(u, v)f(u, v) + O(t?);
G(u,v,t) =Go(u,v) + 2th(u, v
( (

=Go(u, v) — 2th(u, v

(N, X,) + O(t?)

)
)g(u, v) + O(t?),

where e, f, g are the coefficients of the second fundamental form
of X. Hence

EG — F? = EyGo — F¢ — 2t (eGy — 2fFg + gGo) + O(t?).



First variational formula, cont.

Hence

://\f(EG—Fz)dudv
// \/EOGO—FZdudv—t// —2fFo+ 8%,
\/EoGo — F2

+ 0(t?)

// \/mdudvzt// hHAA + O(t2).




First variational formula, cont.

Hence

:/¢wc—#wwv

— 2fFy + &G,
//\/EOGO—F2dudv—t// 0 8%,
JEoGo — F2

+0(t%)
[/v@MbFMMVH//hMM+O()

e Corollary: A’(0) = 0 for all normal variation of @ if and only if
H =0 on Q. Actually, a regular surface M is minimal if and
only if A’(0) = 0 for all normal variation of M with compact
support: i.e. any variation by fN where f has satisfies f # 0
is a compact set in M.




Construction of bump function

To prove the theorem, we need to construct a so-called bump
function, starting with

¢(t):{ 0, <o

e ¢, ift>0.

Consider the function:

where
P1(t) = ¢(2+ t)(2 — 1), Yo(t) = $(t — 1) + ¢(—1 — 1)
Then ®(t) satisfies ®(t) > 0, and

{ 1, if |t <1;

*®() =10, if|t|>2



A general result

Lemma
Let h be a smooth function defined in a domain U C R?. Suppose

//fhdudv:O
U

for all smooth function f with compact support in U, then h = 0.

v

A reference for minimal surfaces: Osserman, A survey of minimal
surfaces.



Constant mean curvature surfaces

Let M be an regular surface which is the boundary of a domain.
Let N be a unit normal vector field. Consider the variation given
by variational vector field fN: Namely in local coordinate patch:

Y(u,v;t) =X(u,v)+ tfN(u, v).

Or in general Y = X + tfN where X is the position vector of a
point in M.



Variation with constraint

We want to compute the variation of the area under the constraint
the the volume is fixed. As before, let A(t) be the area of the
surface Y(t). Then we have

A(0) = —2//M fHAA.



Volume constraint

Let V(t) be the volume contained insider Y(t). So f must be such
that V/(0) = 0.

Let X(u, v) be a local parametrization from U — M C R3.
Consider the map

F(u,v,w) = X(u,v) + wN(u,v) = (x,y, 2).

Then the volume between X(u, v) and Y(u, v, t) is given by

9= [ ( [ de) dud



where

Xy Xy Xw

J =det Yu YW Yw
Zy Zv Zw

=(Xy +wN,) x (X, +wN,)-N

Hence

V(t) = t// FX, x Xy|dudv + O(£2)and
U

V/(0) :// FIX, x X, |dudv.
U



Let M be as above. Suppose M is a critical point of the area
functional under normal variation preserving volume. Then M has
constant curvature.

From above, we have

// fHdA =0
M

for all f satisfying [[,, fdA = 0. Hence H must be constant.
L]

Question: ls it possible that H = 07



Delaunay surfaces

(Delaunay). A complete immersed surface of revolution of
constant mean curvature is a roulette of a conic.

@ Roulette of a circle gives a circular cylinder.
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Delaunay surfaces

(Delaunay). A complete immersed surface of revolution of
constant mean curvature is a roulette of a conic.

@ Roulette of a circle gives a circular cylinder.
@ Roulette of a parabola gives a catenoid.

@ Roulette of an ellipse is called an undulary and it gives an
unduloid.

@ Roulette of a hyperbola is called a nodary and it gives a
nodoid.



