Hopf's Umlaufsatz

Theorem (Hopf's Umlaufsatz, Theorem of Turning Tangents)

Let $\alpha:[0,I]\to\mathbb{R}^2$ be a piecewise regular, simple closed curve with $\alpha(0)=\alpha(I)$. Let $\alpha(t_1),\ldots,\alpha(t_k)$,

 $0 = t_0 < t_1 < \cdots < t_k < t_{k+1} = I$ be the vertices of α with exterior angle θ_i . Let φ_i be smooth choice of angles defined in $[t_i, t_{i+1}]$ such that the oriented angle from the positive axis to $\alpha'(t)$ is $\varphi_i(t)$ (i.e. $\alpha' = (\cos \varphi_i(t), \sin \varphi_i(t))$) for $t \in [t_i, t_{i+1}]$. Then

$$\sum_{i=1}^k \left(\varphi_i(t_{i+1}) - \varphi_i(t_i)\right) + \sum_{i=0}^k \theta_i = \pm 2\pi.$$

It is +1 if α is positively oriented and -1 if it is negatively oriented, with respect to the usual orientation of \mathbb{R}^2 .

Proof for smooth curves

Proof Let us prove the theorem for smooth simple closed curve. We assume that α is positively oriented.

Step 1: We may assume that $\alpha(0) = \alpha(I)$ is the origin. Moreover, we may assume that there is a unit vector \mathbf{u} so that $p + t\mathbf{u}$ will not intersect α , for t > 0. We may also assume that

 $\alpha'(I) = \alpha'(0) = \mathbf{e}_1 = (1,0)$. Then $\mathbf{e}_2 = (0,1)$ is pointing inside α because it is positively oriented. Then \mathbf{u} is pointing downward.

Step 2: Let T be the triangle:

$$T = \{(s, t) | 0 \le s \le t \le l\}.$$

Define a map $\mathbf{v}: T \to \mathbb{S}^2$ as follows

$$\mathbf{v}(s,t) = \left\{ egin{array}{ll} rac{lpha(t) - lpha(s)}{|lpha(t) - lpha(s)|}, & ext{if } s < t ext{ and } (s,t)
eq (0,l); \ lpha'(s), & ext{if } s = t; \ -lpha'(0), & ext{if } (s,t) = (0,l). \end{array}
ight.$$

Then \mathbf{v} well-defined because the curve is simple closed. It is continuous. in fact:

- (i) If $s_0 < t_0$ and $(s_0, t_0) \neq (0, 1)$, then it is obvious.
- (ii) If $s_0 = t_0$, then it is also true.
- (iii) At (0, I), then for (s, t) near this point, s < t and

$$\mathbf{v}(s,t) = \frac{\alpha(t) - \alpha(s)}{|\alpha(t) - \alpha(s)|} \to -\alpha'(I) = -\alpha'(0) = -\mathbf{e}_1.$$

Step 3: There is a continuous function θ on T so that

$$\mathbf{v}(s,t) = (\cos(s,t),\sin(s,t)).$$

Then the theorem is proved if one can show that

$$\theta(I,I) - \theta(0,0) = 2\pi$$

if α is positively oriented. We may also choose that $\theta(0, I) = \pi$.

Step 4: Note that

$$\theta(I, I) - \theta(0, 0) = \theta(I, I) - \theta(0, I) + \theta(0, I) - \theta(0, 0).$$

Now

$$\theta(I,I) - \theta(0,I) = \lim_{s \to I} (\theta(s,I) - \theta(0,I)).$$

For 0 < s < I, $\theta(s, I) - \theta(0, I)$ measures the angle between $\mathbf{v}(s, I)$ and $-\mathbf{e}_1$. Note that $\mathbf{v}(s, I) \neq -\mathbf{u}$. So $|\theta(s, I) - \theta(0, I)| < 2\pi$. But

$$\mathbf{v}(I,I)=\mathbf{e}_1.$$

Hence

$$\theta(I,I) - \theta(0,I) = \pm \pi.$$

If α is positively oriented, then the curve must be above the x-axis as the unit normal is pointing insider the curve. We should get π . Similarly, $\theta(0, I) - \theta(0, 0) = \pi$.

Jordan curve theorem

Theorem (Jordan curve theorem)

Let α be a continuous simple closed curve in \mathbb{R}^2 (or in \mathbb{S}^2), then α will separate \mathbb{R}^2 (or \mathbb{S}^2) into two components (i.e. open connected sets).

Proof for Jordan polygon

Let P be a Jordan polygon.

Step 1: Choose a direction which is not parallel to any side, given by a unit vector \mathbf{u} . This can be done because P has only finitely many sides. Let $p \notin P$, the straight line $l : \mathbf{p} + t\mathbf{u}$, will intersect a side of P at most once.

Step 2: For any point $\mathbf{p} \notin P$, let $n(\mathbf{p})$ be the number of points of intersection of the ray $\mathbf{p} + t\mathbf{u}$, t > 0 with P, with the following convention. If $\mathbf{p} + t\mathbf{u}$ passes through a vertex, then it will be counted as a point of intersection only if the two sides with this vertex is on the different side of the ray. By **Step 1**, $n(\mathbf{p})$ is finite.

Step 3: Let

$$\mathcal{E} = \{ \mathbf{p} \notin P | n(\mathbf{p}) \text{ is even} \},$$

$$\mathcal{O} = \{ \mathbf{p} \notin P | \ n(\mathbf{p}) \text{ is odd} \}.$$

Step 4: $\mathcal{E} \neq \emptyset$, and $\mathcal{O} \neq \emptyset$. In fact, let I be any ray $\mathbf{p} + t\mathbf{u}$. Then this ray will not intersect P for $t \geq t_0$, say. Let $q = \mathbf{p} + t_0\mathbf{u}$. Then $q + t\mathbf{u}$ will not intersect P. So $q \in \mathcal{E}$. There is $p \notin P$ so that $\mathbf{p} + t\mathbf{u}$, t > 0 will meet a side P. Let $q = \mathbf{p} + t_0\mathbf{u}$ be the last point that of intersection. Then the point just before q will be in \mathcal{O} .

Step 5: If I is a line segment in $\mathbb{R}^2 \setminus P$, then the parity is constant. For the parity of a point moving along such a segment can only change when the ray in the fixed direction \mathbf{u} through the point passes through a vertex of P, and in neither of the two possible cases will the parity actually change, because of the agreement made in the preceding paragraph. Hence both $\mathcal E$ and $\mathcal O$ are open. Moreover, any point in $\mathcal E$ cannot be joined to $\mathcal O$ by a polygonal path without intersecting P.

Step 6: If two points \mathbf{p} , \mathbf{q} not in P are close to a segment of P and is on different sides of the segments, then they belongs to different classes of parity.

Step 7: Using the fact that P is a Jordan curve and **Step 6** to prove that if \mathbf{p} , \mathbf{q} have the same parity with \mathbf{p} , $\mathbf{q} \in \mathbb{R}^2 \setminus P$, then they can be connected by a polygonal path inside $\mathbb{R}^2 \setminus P$. Hence $\mathbb{R}^2 \setminus$ has at most two components.

In higher dimension, we have:

Theorem

(Jordan-Brouwer Separation Theorem) Let $B \subset \mathbb{S}^n$ which is homeomorphic to \mathbb{S}^{n-1} , $n \geq 2$. Then $\mathbb{S}^n \setminus B$ consists of two arcwise connected components such that B is the boundary of each component.