Hopf's Umlaufsatz

Theorem (Hopf’s Umlaufsatz, Theorem of Turning Tangents)

Let o : [0,1] — R? be a piecewise regular, simple closed curve with
a(0) = a(l). Let a(t1),...,a(tk),

0=ty <ty < -+ <ty < tyyr1 =1 be the vertices of o with
exterior angle 0;. Let ¢; be smooth choice of angles defined in

[ti, ti+1] such that the oriented angle from the positive axis to o/(t)
is pi(t) (ie. o = (cospi(t),sinp;(t))) for t € [t;, tir1]. Then

k k
> (piltivn) — @i(t) + ) i = £2m.
i=1

i=0
It is +1 if « is positively oriented and —1 if it is negatively
oriented, with respect to the usual orientation of R?.




Proof for smooth curves

Proof Let us prove the theorem for smooth simple closed curve.
We assume that « is positively oriented.

Step 1: We may assume that «(0) = «(/) is the origin. Moreover,
we may assume that there is a unit vector u so that p + tu will not
intersect «, for t > 0. We may also assume that

/(1) =a/(0) =e; = (1,0). Then ez = (0,1) is pointing inside «
because it is positively oriented. Then u is pointing downward.
Step 2: Let T be the triangle:

Define a map v : T — S? as follows

%, if s<tand(s,t)#(0,/);

v(s,t) =4 o(s), ifs=t;
—a/(0), if (s,t) = (0,/).



Then v well-defined because the curve is simple closed. It is
continuous. in fact:

(i) If so < to and (sp, to) # (0,1), then it is obvious.

(i) If so = to, then it is also true.

(iii) At (0,/), then for (s, t) near this point, s < t and

v(s,t) = a ()

|a(t) — afs)|

— —d/(l) = —d/(0) = —ey.



Step 3: There is a continuous function 6 on T so that
v(s, t) = (cos(s, t),sin(s, t)).
Then the theorem is proved if one can show that
6(1,1) —0(0,0) = 27

if « is positively oriented. We may also choose that 6(0,/) = 7.



Step 4: Note that
o(1,1)—6(0,0) =6(/,1)—6(0,1) + 6(0,1) — 6(0,0).

Now

o(1,1) — 6(0, 1) (0(s, 1) — 0(0, ).

= lim
s—/



For 0 <s </, §(s,!) —60(0,/) measures the angle between v(s, /)
and —e;. Note that v(s,/) # —u. So |0(s,/) — 6(0,/)| < 27. But

v(l,1) =ey.

Hence
o(1,1)—6(0,1) = £m.

If « is positively oriented, then the curve must be above the x-axis
as the unit normal is pointing insider the curve. We should get .
Similarly, (0, /) — 6(0,0) = =.



Jordan curve theorem

Theorem (Jordan curve theorem)

Let o be a continuous simple closed curve in R? (or in S?), then

will separate R? (or S?) into two components (i.e. open connected
sets).




Proof for Jordan polygon

Let P be a Jordan polygon.

Step 1: Choose a direction which is not parallel to any side, given
by a unit vector u. This can be done because P has only finitely
many sides. Let p ¢ P, the straight line / : p + tu, will intersect a
side of P at most once.

Step 2: For any point p ¢ P, let n(p) be the number of points of
intersection of the ray p + tu, t > 0 with P, with the following
convention. If p + tu passes through a vertex, then it will be
counted as a point of intersection only if the two sides with this
vertex is on the different side of the ray. By Step 1, n(p) is finite.



Step 3: Let
E={p ¢ P| n(p) is even},

O ={p ¢ P| n(p) is odd}.

Step 4: £ # 0, and O # (. In fact, let /| be any ray p + tu. Then
this ray will not intersect P for t > tg, say. Let g = p + tou. Then
g + tu will not intersect P. So g € £. Thereis p ¢ P so that
p+ tu, t > 0 will meet a side P . Let g = p+ tpu be the last point
that of intersection. Then the point just before g will be in O.



Step 5: If / is a line segment in R? \ P, then the parity is
constant. For the parity of a point moving along such a segment
can only change when the ray in the fixed direction u through the
point passes through a vertex of P, and in neither of the two
possible cases will the parity actually change, because of the
agreement made in the preceding paragraph. Hence both £ and O
are open. Moreover, any point in £ cannot be joined to O by a
polygonal path without intersecting P.

Step 6: If two points p,q not in P are close to a segment of P
and is on different sides of the segments, then they belongs to
different classes of parity.



Step 7: Using the fact that P is a Jordan curve and Step 6 to
prove that if p,q have the same parity with p,q € R?\ P, then
they can be connected by a polygonal path inside R? \ P. Hence
R?\ has at most two components.



In higher dimension, we have:

(Jordan-Brouwer Separation Theorem) Let B C S” which is
homeomorphic to S"~Y, n > 2. Then S" \ B consists of two
arcwise connected components such that B is the boundary of
each component.




