Hyperbolic plane \mathbb{H}^2

The hyperbolic plane is given as follows. It is an abstract surface. Let

$$\mathbb{H}^2 = \{ (x, y) \in \mathbb{R}^2 | y > 0 \}$$

so that the first fundamental form is

$$g_{ij}(x,y)=\frac{1}{y^2}.$$

That is to say, if $\alpha(t) = (x(t), y(t))$ is a regular curve, then

$$\langle \alpha', \alpha' \rangle = g_{11}(x')^2 + 2g_{12}x'y' + g_{22}(y')^2 = \frac{1}{y^2(t)} ((x')^2 + (y')^2).$$

Gaussian curvature of \mathbb{H}^2

To compute the Gaussian curvature.

By previous result

$$K = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} \right) \log y = -1.$$

Completeness of \mathbb{H}^2

 \mathbb{H}^2 is complete: every divergent path has infinite length.

Let $\alpha:[0,1)$ be a divergent path. Let $\alpha(t)=(x(t),y(t))$, then the length of α is given by

$$\ell(\alpha) = \int_0^1 \frac{1}{y(t)} \left((x')^2(t) + (y')^2(t) \right)^{\frac{1}{2}} dt.$$

Since α is divergent, there exist $t_k \to 1$ so that (i) $y(t_k) \to 0$; (ii) $y(t_k) \to \infty$; or (iii) $b > y(t_k) > a > 0$ for some a, b and $x(t_k) \to \infty$. In any case we will have $\ell(\alpha) = \infty$.

Geodesics of \mathbb{H}^2

Consider the energy functional $\int \mathcal{L}dt$, with

$$\mathcal{L} = \frac{1}{2}y^{-2}((\dot{x})^2 + (\dot{y})^2).$$

To find the E-L equations, first we have

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \dot{x}} = 0; \\ \frac{\partial \dot{\mathcal{L}}}{\partial \dot{x}} = y^{-2}\dot{x}; \\ \frac{\partial \dot{\mathcal{L}}}{\partial y} = -y^{-3}\left((\dot{x})^2 + (\dot{y})^2\right); \\ \frac{\partial \mathcal{L}}{\partial \dot{y}} = y^{-2}\dot{y}. \end{cases}$$

Hence the E-L equations are:

$$\begin{cases} 0 = \frac{\partial \mathcal{L}}{\partial x} - \frac{d}{dt} (\frac{\partial \mathcal{L}}{\partial \dot{x}}) = -\frac{d}{dt} (y^{-2} \dot{x}); \\ 0 = \frac{\partial \mathcal{L}}{\partial y} - \frac{d}{dt} (\frac{\partial \mathcal{L}}{\partial \dot{y}}) = -y^{-3} ((\dot{x})^2 + (\dot{y})^2) - \frac{d}{dt} (y^{-2} \dot{y}). \end{cases}$$

Geodesics of \mathbb{H}^2 , cont.

That is:

$$\begin{cases} \ddot{x} - 2y^{-1}\dot{x}\dot{y} = 0; \\ \ddot{y} + y^{-1}\left((\dot{x})^2 - (\dot{y})^2\right) = 0. \end{cases}$$

Obviously, x =constant is a geodesic. Next consider the semi-circle: $x = R \cos t$, $y = R \sin t$, $0 < t < \pi$. Then

$$x'' - 2y^{-1}x'y' = -\frac{\cos t}{\sin t}x'$$

and

$$y'' - y^{-1} ((x')^2 + (y')^2) = -\frac{\cos t}{\sin t} y'.$$

So it is a pre-geodesic.

Proposition

The geodesics are either $\{x = constant\}$ or semicircles with centers at the x-axis and orthogonal to the x-axis.

Isometry of \mathbb{H}^2

Let $F: \mathbb{H}^2 \to \mathbb{H}^2$ defined as

$$F(x,y)=(u,v),$$

so that

$$u + \mathbf{i}v = \frac{az + b}{cz + d}$$

with a, b, c, d real and ac - bd = 1. Here z = x + iy.

Then

$$u + \mathbf{i}v = \frac{(az + b)(c\bar{z} + d)}{|cz + d|^2}$$

Imaginary part of $(az + b)(c\bar{z} + d)$ is

$$(ad - bc)y = y > 0.$$

So this is well-defined.

Isometry of \mathbb{H}^2 , cont.

Let $\alpha(t)=(x(t),y(t))$ be a curve in \mathbb{H}^2 , $t\in[0,1]$. Then the length of $\alpha(t)$ is given by

$$\ell(\alpha) = \int_0^1 \frac{1}{y(t)} \left((x')^2(t) + (y')^2(t) \right)^{\frac{1}{2}} dt = \int_0^1 \frac{1}{y(t)} |z'(t)| dt.$$

Let $\beta(t) = F \circ \alpha$. Write $\beta(t) = (u(t), v(t))$, then the length of β is

$$\ell(\beta) = \int_0^I \frac{1}{v(t)} |w'(t)| dt$$

where w = u + iv.

Isometry of \mathbb{H}^2 , cont.

Now

$$v = \frac{y}{|cz+d|^2}.$$

$$w' = \left(\frac{az+b}{cz+d}\right)'$$

$$= \frac{az'(cz+d) - cz'(az+b)}{(cz+d)^2}$$

$$= \frac{z'}{(cz+d)^2}.$$

$$\frac{1}{|cz+d|^2} |w'(t)| = \frac{1}{|cz+d|^2} |z'(t)|.$$

So

$$\frac{1}{v(t)}|w'(t)| = \frac{1}{y(t)}|z'(t)|.$$

Isometry of \mathbb{H}^2 , cont.

What is the image of x = constant. That is the image of F(0, y).

$$u + \mathbf{i}v = F(0, y) = \frac{a\mathbf{i}y + b}{c\mathbf{i}y + d}.$$

It is a circle with centered at $\frac{1}{2}(a/c + b/d)$ if $c \neq 0, d \neq 0$.

Geodesic equations of surfaces of revolution

Consider the surface of revolution given by

$$\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

with f > 0. In the following f' means $\frac{df}{dv}$, etc. If there is come confusion, we will write f_v instead, etc. Consider $u^1 \leftrightarrow u$, $u^2 \leftrightarrow v$.

$$\begin{cases} g_{11} = & E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = f^2,; \\ g_{12} = & g_{21} = F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0 \\ g_{22} = & G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = (f')^2 + (g')^2. \end{cases}$$

So

$$\left\{ \begin{array}{l} \Gamma^1_{11} = 0, \Gamma^1_{12} = \frac{f'}{f}, \Gamma^1_{22} = 0; \\ \Gamma^2_{11} = -\frac{ff'}{(f')^2 + (g')^2}, \Gamma^2_{12} = 0, \Gamma^2_{22} = \frac{f'f'' + g'g''}{(f')^2 + (g')^2}. \end{array} \right.$$

Geodesic equations of surfaces of revolution

Hence geodesic equations are:

$$\begin{cases} \ddot{u} + \frac{2f'}{f}\dot{u}\dot{v} = 0; \\ \ddot{v} - \frac{ff'}{(f')^2 + (g')^2}(\dot{u})^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2}(\dot{v})^2 = 0. \end{cases}$$

Corollary

Any meridian is a geodesic. A parallel $\mathbf{X}(u, v_0)$ is a geodesic if and only if $f'(v_0) = 0$.

General geodesics

To study the behavior of general geodesics, we begin with the following lemma:

Lemma

Let $a_1(t), a_2(t)$ be smooth functions on $(T_1, T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof of the lemma

Proof: Suppose θ satisfies the condition. Then $a_1' = -\theta' \sin \theta$, $a_2' = \theta' \cos \theta$. Hence $\theta' = a_1 a_2' - a_2 a_1'$. From this we have uniqueness. To prove existnce, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$\theta(t) = \theta_0 + \int_{t_0}^t (a_2'a_1 - a_1'a_2)d\tau.$$

Let $f = (a_1 - b_1)^2 + (a_2 - b_2)^2$, where $b_1 = \cos \theta$, $b_2 = \sin \theta$. Then $f = 2 - 2a_1b_1 - 2a_2b_2$.

Proof of lemma, cont.

Then

$$\begin{aligned}
-\frac{1}{2}f' &= a'_1b_1 + a_1b'_1 + a'_2b_2 + a_2b'_2 \\
&= a'_1b_1 - \theta'a_1b_2 + a'_2b_2 + \theta'a_2b_1 \\
&= (a'_2a_1 - a'_1a_2)(-a_1b_2 + a_2b_1) + a'_1b_1 + a'_2b_2 \\
&= -a_1^2a'_2b_2 + a_2a'_2a_1b_1 + a_1a'_1a_2b_2 - a_2^2a'_1b_1 + a'_1b_1 + a'_2b_2 \\
&= -a_1^2a'_2b_2 - a_1a'_1a_1b_1 - a_2a'_2a_2b_2 - a_2^2a'_1b_1 + a'_1b_1 + a'_2b_2 \\
&= 0
\end{aligned}$$

because $a_1^2 + a_2^2 = 1$ and $a_1 a_1' + a_2 a_2' = 0$.

General geodesics, cont.

Now let $\alpha(s) = \mathbf{X}(u(s), v(s))$ be a geodesic on M parametrized by arc length. Let $\mathbf{e_1} = \mathbf{X}_u/|\mathbf{X}_u|$ and $\mathbf{e_2} = \mathbf{X}_v/|\mathbf{X}_v|$. Then $\mathbf{e_1}, \mathbf{e_2}$ are orthonormal. Let

$$\alpha' = a_1 \mathbf{e_1} + a_2 \mathbf{e_2}.$$

By the lemma there exists smooth function $\theta(s)$ such that $a_1 = \sin \theta$, $a_2 = \cos \theta$. Note that θ is the angle between α' and the meridian. That is:

$$\sin\theta = \langle \alpha', \mathbf{e_1} \rangle = f \dot{u}.$$

Clairaut's Theorem

Proposition (CLAIRAUT'S THEOREM)

 $r(s)\sin\theta(s)$ is constant along α , where r(s) is the distance of $\alpha(s)$ from the z-axis.

Proof.

Denote the $\frac{d\alpha}{ds}$ by α' etc. Since r(s) = f(v(s)),

$$r'=f_{v}v'$$
.

Also
$$\sin \theta = \langle \alpha', \mathbf{e_1} \rangle = u'f$$
, so $(\sin \theta)' = u''f + u'v'f_v$.

$$(r\sin\theta)' = f_v v' u' f + u'' f + f_v u' v'$$
$$= f \left(u'' + \frac{2f_v}{f} u' v' \right)$$
$$= 0.$$

Nöether's first theorem, a digression

Consider the action:

$$S = \int_a^b \mathcal{L}(\phi, \dot{\phi}, t) dt.$$

here $\phi = (\phi^k)$. To be precise, we denote $\mathcal{L}(u, v, t)$ so that in the above, $u^k = \phi^k, v^k = \dot{\phi^k}$. Consider the transformation:

$$\begin{cases} \widetilde{t} = \widetilde{t}(\phi, t, \epsilon) \\ \widetilde{\phi} = \widetilde{\phi}(\phi, t, \epsilon). \end{cases}$$

Let $\widetilde{\mathcal{L}}=\mathcal{L}(\widetilde{\phi},\widetilde{\phi}',\widetilde{t})$. ' means derivative w.r.t. \widetilde{t} . Assume $\widetilde{t}=t,\widetilde{\phi}(\phi,t,\epsilon)=\phi$ at $\epsilon=0$.

Nöether's first theorem, cont.

The action is said to be invariant if

$$\mathcal{L} - \widetilde{\mathcal{L}} \frac{d\widetilde{t}}{dt} = O(\epsilon^2).$$

Hence we have

$$\frac{d}{d\epsilon} \left(\mathcal{L} - \widetilde{\mathcal{L}} \frac{d\widetilde{t}}{dt} \right) \Big|_{\epsilon=0} = 0.$$

Let

$$\begin{cases} \tau = \frac{\partial \tilde{t}}{\partial \epsilon} \Big|_{\epsilon=0}; \\ \xi^k = \frac{\partial \tilde{\phi}}{\partial \epsilon} \Big|_{\epsilon=0}. \end{cases}$$

Proof is given at the end of the note for your reference.

Theorem (Nöether)

If \mathcal{L} is invariant in the above sense, then

$$\frac{d}{dt}\left(\tau H - p_k \xi^k\right) = (\xi^k - \tau \dot{\phi}^k) E_k$$

where $p_k = rac{\partial \mathcal{L}}{\partial \dot{\phi^k}}$, $H = p_k \dot{\phi^k} - \mathcal{L}$ and E_k is the E-L expression

$$\frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right).$$

In particular, if $E_k = 0$, then $\tau H - p_k \xi^k$ is conserved, i.e. constant along the solution.

Consider m particles in three space with coordinates (x^j, y^j, z^j) with mass M_j . Then

$$\mathcal{L} = \frac{1}{2} \sum_{j} M_{j} \left[(\dot{x}^{j})^{2} + (\dot{y}^{j})^{2} + (\dot{z}^{j})^{2} \right] - V(t, x, y, z).$$

Then

$$p_k = \frac{\partial \mathcal{L}}{\partial \dot{\phi}^k}$$

which is $M_j \dot{x}^j$, etc.

$$H = M_j \dot{x}^j \dot{x}^j - \frac{1}{2} \sum_j M_j \left[(\dot{x}^j)^2 + (\dot{y}^j)^2 + (\dot{z}^j)^2 \right] - V(t, x, y, z)$$

$$= \frac{1}{2} \sum_j M_j \left[(\dot{x}^j)^2 + (\dot{y}^j)^2 + (\dot{z}^j)^2 \right] + V(t, x, y, z).$$

Suppose V does not depend on t (i.e. there is only one independent variable). Then the transformation $t \to t + \epsilon$, with x, y, x fixed is invariant. We have $\tau = 1$, $\xi = 0$.

Hence we have,

$$0 = \frac{d}{dt} \left(-\mathcal{L} + \sum_j M_j \left((\dot{x}^j)^2 + (\dot{y}^j)^2 + (\dot{z}^j)^2 \right) \right) = \frac{d}{dt} (K + V).$$

Here K is the kinetic energy. So the total energy is preserved.

Geodesics of surfaces of revolution, cont.

Clairaut's Theorem revisited: In this case for the energy functional,

$$\mathcal{L} = \frac{1}{2} (f^2(\dot{u})^2 + (f_v^2 + g_v^2)(\dot{v})^2).$$

If we let $\widetilde{u} = u + \epsilon$, $\widetilde{v} = v$, $\widetilde{t} = t$, then

$$\mathcal{L} = \widetilde{\mathcal{L}}$$

Here we have $\tau = 0$, $\xi^1 = 1$, $\xi^2 = 0$.

$$p_1 = f^2 \dot{u}$$

So, we have

$$\frac{d}{dt}(f^2\dot{u})=0$$

along the geodesic.

In fact, this is just one of the E-L equations. Note that

$$\sin \theta = \langle \alpha', \mathbf{e}_1 \rangle = \langle \mathbf{X}_u \dot{u} + \mathbf{X}_v \dot{v}, \frac{\mathbf{X}_u}{|\mathbf{X}_u|} \rangle = f \dot{u}.$$

So
$$r(s) \sin \theta(s) = f(\alpha(s)) \sin \theta(s) = f^2 \dot{u}$$
.

Geodesics of surfaces of revolution, cont.

Let us analyse a geodesic $\alpha(s)$, $0 \le s < L \le \infty$, on the surface of revolution parametrized by arc length. Let us assume that

$$g(v)$$
 is increasing, i.e. $g_v > 0$.

Let r(s) and $\theta(s)$ be as in Clairaut's Theorem. Let $\theta_0 = \theta(0)$. We may assume that

$$0 \le \theta_0 \le \frac{\pi}{2}$$
.

By Clairaut's Theorem,

$$r(s)\sin\theta(s)=R$$
 for some constant $R\geq 0$.

Note that $r(s) \geq R$.

Case 1: R=0, then $\theta=\pi/2$ along α . So it is a meridian. **Case 2**: R>0. Then $\sin\theta_0=R/r(0)<1$. So $0\leq\theta_0<\pi/2$. So α is going up. Then we must have $f_V(\alpha(0))\neq 0$. Let us assume

that $f_{\nu}(\alpha(0)) > 0$. Hence initially, $r(s) = f(\alpha(s)) > R$ and it continue to go up. We consider two cases:

- Case 2(i) There is no parallel above $\alpha(0)$ with radius R. Then α will go up all the way.
- Case 2(ii) There is a parallel above $\alpha(0)$ so that the radius is R. Let C be the first one above $\alpha(0)$. Then we have two more subcases:
- (ii)(a) C is a geodesic. Then α will approach to C but never intersect C.
- (ii)(b) C is not a geodesic, then α will touch C and bounces away.

To summarize, in the above settings, we have:

Proposition

- (i) If R = 0, then α is a meridian.
- (ii) R>0. Then geodesic will go up for all s, as long as r>R, i.e. the z coordinate of α is increasing in s. Either α does not come close to any parallel of radius R, and α will go up for all s, or α will be close to a parallel C of radius R. Let C be the first such parallel above α . Then we have the following cases:
 - (a) C is a geodesic. Then α will not meet C and α will come arbitrarily close to C without intersecting C.
 - (b) C is not a geodesic. Then there is $\alpha(s_0) \in C$ for some s_0 and α will bounce off from C and will turn downward.

Proof of Nöether's theorem

Proof: At $\epsilon = 0$,

$$0 = \frac{d}{d\epsilon} \left(\mathcal{L} - \widetilde{\mathcal{L}} \frac{d\widetilde{t}}{dt} \right)$$

$$= -\frac{\partial}{\partial \epsilon} \widetilde{\mathcal{L}} - \mathcal{L} \frac{\partial}{\partial \epsilon} \left(\frac{d\widetilde{t}}{dt} \right)$$

$$= -\frac{\partial \mathcal{L}}{\partial \phi^{k}} \xi^{k} - \frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}} \frac{\partial \dot{\widetilde{\phi}}^{k}}{\partial \epsilon} - \frac{\partial \mathcal{L}}{\partial t} \tau - \mathcal{L} \dot{\tau}$$

Now

$$\frac{\partial \dot{\widetilde{\phi}}^{k}}{\partial \epsilon} = \frac{\partial}{\partial \epsilon} \left(\frac{\partial \dot{\widetilde{\phi}}^{k}}{\partial t} \cdot \frac{dt}{d\widetilde{t}} \right)$$
$$= \dot{\xi}^{k} - \dot{\phi}^{k} \dot{\tau}.$$

So we have

$$0 = \frac{\partial \mathcal{L}}{\partial \phi^{k}} \xi^{k} + \frac{\partial \mathcal{L}}{\partial \dot{\phi^{k}}} \left(\dot{\xi^{k}} - \dot{\phi^{k}} \dot{\tau} \right) + \frac{\partial \mathcal{L}}{\partial t} \tau + \mathcal{L} \dot{\tau}$$

Also,

$$\begin{split} \tau \frac{\partial}{\partial t} \mathcal{L} = & \tau \frac{d}{dt} \mathcal{L} - \tau \frac{\partial \mathcal{L}}{\partial \phi^k} \dot{\phi^k} - \tau \frac{\partial \mathcal{L}}{\partial \dot{\phi^k}} \ddot{\phi^k} \\ = & \tau \frac{d}{dt} \mathcal{L} - \tau \frac{\partial \mathcal{L}}{\partial \phi^k} \dot{\phi^k} - \frac{d}{dt} \left(\tau \frac{\partial \mathcal{L}}{\partial \dot{\phi^k}} \dot{\phi^k} \right) + \frac{d}{dt} \left(\tau \frac{\partial \mathcal{L}}{\partial \dot{\phi^k}} \right) \dot{\phi^k} \end{split}$$

$$\begin{split} &-\frac{d}{dt}\left(\tau\mathcal{L}-\tau\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\dot{\phi}^{k}\right)\\ &=\frac{\partial\mathcal{L}}{\partial\phi^{k}}\xi^{k}+\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\left(\dot{\xi}^{k}-\dot{\phi}^{k}\dot{\tau}\right)-\tau\frac{\partial\mathcal{L}}{\partial\phi^{k}}\dot{\phi}^{k}+\frac{d}{dt}\left(\tau\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\right)\dot{\phi}^{k}\\ &=(\xi^{k}-\tau\dot{\phi}^{k})\frac{\partial\mathcal{L}}{\partial\phi^{k}}+\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\left(\dot{\xi}^{k}-\dot{\phi}^{k}\dot{\tau}\right)+\frac{d}{dt}\left(\tau\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\right)\dot{\phi}^{k}\\ &=(\xi^{k}-\tau\dot{\phi}^{k})\frac{\partial\mathcal{L}}{\partial\phi^{k}}+\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\dot{\xi}^{k}+\tau\dot{\phi}^{k}\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\\ &=(\xi^{k}-\tau\dot{\phi}^{k})\frac{\partial\mathcal{L}}{\partial\phi^{k}}+\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\xi^{k}\right)-\xi^{k}\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\right)+\tau\dot{\phi}^{k}\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\\ &=(\xi^{k}-\tau\dot{\phi}^{k})\left(\frac{\partial\mathcal{L}}{\partial\phi^{k}}-\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\right)+\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{\phi}^{k}}\xi^{k}\right). \end{split}$$

So we have

$$\frac{d}{dt}\left(\tau H - p_k \xi^k\right) = \left(\xi^k - \tau \dot{\phi^k}\right) \left(\frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\phi}^k}\right)$$

where

$$p_k = \frac{\partial \mathcal{L}}{\partial \dot{\phi^k}}, \quad H = p_k \dot{\phi^k} - L$$