Hyperbolic plane H?

The hyperbolic plane is given as follows. It is an abstract surface.
Let
H? = {(x.y) €R?| y > 0}
so that the first fundamental form is
1
gij\X,yY) = —>-
U( ) )/2

That is to say, if a(t) = (x(t),y(t)) is a regular curve, then

(o, 0f) = g11(X')* + 212Xy + g2o(y')* = ygl(t) () + ().



Gaussian curvature of H?

To compute the Gaussian curvature.
By previous result

0? 0?
2
=y (axz+aX2> ogy =1



Completeness of H?

H? is complete: every divergent path has infinite length.
Let a : [0,1) be a divergent path. Let a(t) = (x(t),y(t)), then
the length of « is given by

1
1
U —/ xX)2(t) + (v)*(t
(@)= | y(t)(( ) (1) + (v)* (1)
Since a is divergent, there exist t, — 1 so that (i) y(tx) — 0; (ii)
y(tk) — oo; or (iii) b > y(tx) > a > 0 for some a, b and
x(tx) — oo. In any case we will have /(a) = cc.

N|—=

dt.



Geodesics of H?

Consider the energy functional [ Ldt, with

L=y 2 (P +GP).

To find the E-L equations, first we have

oL
= _0
¥,
375 -
=y 2 ()P + ()%
gﬁ y %y



Hence the E-L equations are:

0= 2 908y~ 9y
{ _32 ‘ffgi - d. .

=a atlay) = Y (P HOP) - ZOT).



Geodesics of H?, cont.

That is:
x —2y xy =0;
{ yHy () - () =0.
Obviously, x =constant is a geodesic. Next consider the
semi-circle: x = Rcost,y = Rsint, 0 <t < m. Then

/ cost ,

lxly - _

1 —
X' =2 -
y sint
and
cost ,

V' =y D)) = -y

So it is a pre-geodesic.

Proposition

The geodesics are either {x = constant} or semicircles with
centers at the x-axis and orthogonal to the x-axis.




Isometry of H?

Let F : H2 — H? defined as

F(x,y) = (u,v),
so that b
u—+iv= az +
cz+d
with a, b, ¢, d real and ac — bd = 1. Here z = x +iy.
Then Pz 1 d
Uty — (az + b)(cz + d)
|cz + d|?

Imaginary part of (az + b)(cz + d) is
(ad — bc)y =y > 0.

So this is well-defined.



Isometry of HZ?, cont.

Let a(t) = (x(t), y(t)) be a curve in H?, t € [0,1]. Then the
length of «(t) is given by

_ li X/2 "2 % _ lizl
(o) = [ o5 PO+ 0P de = [ iz (o

Let 5(t) = F o . Write 5(t) = (u(t), v(t)), then the length of 5 is

|
18) = [ w0l

where w = u +iv.



Isometry of HZ?, cont.

Now
p—
lcz +d|?
, ,az+b,,
W _(cz—i—d)
_aZ'(cz+d) — cZ'(az + b)
N (cz + d)?
Z/
:(cz+d)2'
So ) )
—W'(t)] = —=|Z/(¢
WO = sl )



Isometry of HZ?, cont.

What is the image of x =constant. That is the image of F(0,y).

aiy + b
ciy+d

u+iv=F(0,y)=

It is a circle with centered at 3(a/c + b/d) if c # 0,d # 0.



Geodesic equations of surfaces of revolution

Consider the surface of revolution given by

X(u,v) = (f(v)cosu, f(v)sinu,g(v))

with £ > 0. In the following f’ means d , etc. If there is come
confusion, we will write f, instead, etc.
Consider u! < u, u? < v.

gii= E=(X,X,)="F;
812 = 821 = F= <XU7XV> =0
g2 = G=(X,,X,)=(f)+(g)>
So
Fn:O,F}z_ff',F%z: ' )
{ =~y M2 =0T = iy



Geodesic equations of surfaces of revolution

Hence geodesic equations are:

i+ 20y =0;
- i N2 | f'f'+g'g’ (N2
V= e (O e () =0

Any meridian is a geodesic. A parallel X(u, vp) is a geodesic if and
only if f'(vp) = 0.




General geodesics

To study the behavior of general geodesics, we begin with the
following lemma:

Let a1(t), ax(t) be smooth functions on (T1, T2) C R such that
af + a% = 1. For any ty € (T1, T2) and 6y such that

a1(to) = cos by, ax(to) = sin by, there exists unique a smooth
function 0(t) with 0(ty) = 6y such that ai(t) = cos6(t) and
ar(t) = sin4(t).




Proof of the lemma

Proof: Suppose 0 satisfies the condition. Then aj = —6'sin ¥,

ay = 0’ cosf. Hence 0 = a1a, — apa). From this we have
uniqueness. To prove existnce, fix ty € (T, T2) and let 6y be such
that cos g = a1(0), sinfy = a2(0). Let

t
0(t) = 6o + / (ahay — ajap)dT.
to

Let f = (a1 — b1)2 + (a2 — b2)2, where by = cos, bp = sinf.
Then f =2 —2a1b1 — 2asbs.



Proof of lemma, cont.

Then

1
—§f/ :a’1b1 + albﬂ + a’2b2 + a2b§
:a’lbl — 9,81 by + a’2b2 + 9/321)1
=(a%a1 — aja2)(—a1ba + axby) + a1 b1 + a5bo
= — alahby + anabarby + arajapby — asal by + ay by + ahbo
= — alahby — ayajarby — anabapby — a3a by + &y by + ahbo
=0

because a2 + a3 = 1 and aja} + axah = 0.



General geodesics, cont.

Now let a(s) = X(u(s), v(s)) be a geodesic on M parametrized by
arc length. Let eg = X,,/|X,| and e; = X, /|X,|. Then e, e; are
orthonormal. Let

o = aje; + ares.

By the lemma there exists smooth function 6(s) such that
a1 =sinf, ap = cosf. Note that 6 is the angle between o’ and the
meridian. That is:

sinf = (a/,e1) = fu.



Clairaut’'s Theorem

Proposition (CLAIRAUT’S THEOREM)

r(s)sin0(s) is constant along «, where r(s) is the distance of a(s)
from the z-axis.

Proof.
Denote the 92 by o etc. Since r(s) = f(v(s)),

r=f,v.

Also sinf = (o', e1) = U'f, so (sin0) = "' + v/ V'f,.

(rsin@) =V u'f +u"'f + f,u'V

=f (u” + 2:‘/u'v’>

=0.




Noether's first theorem, a digression

Consider the action:

b
5= / £, 9, t)dt.

here ¢ = (¢¥). To be precise, we denote L(u, v, t) so that in the
above, u¥ = ¢¥, vk = ¢k Consider the transformation:

{ ?N: ?~(¢, t,€)
o= ¢(¢7 £, 6)'

Let Zf L(}, ¢, F). " means derivative w.r.t. . Assume

t=t,¢(¢p,t,€) =pate=0.



Noether's first theorem, cont.

The action is said to be invariant if

dt ,
£- Lo =0().

d ~dt
de <’3 - ‘w) o

_ ot .
{T 0650'
k
6_86—

Proof is given at the end of the note for your reference.

Hence we have

=0.

Let



Theorem (Noether)

If L is invariant in the above sense, then

7 :
= (7H = pi) = (€ — 1¢M)E
t
where p = a%fk, H = pk¢.k — L and Ej is the E-L expression

oc _d (o

Pk dt \ gk |
In particular, if E, = 0, then TH — p&¥ is conserved, i.e. constant
along the solution.

v




Consider m particles in three space with coordinates (x/, y/, 2/)
with mass M;. Then

L= % Y M [ + (P + (&) = V(e Xy, 2).
J

Then
oL
Pk = —
Ok
which is Mjkj, etc.

H =M% — ;Z M; () + (7)) + (£)?] = V(t.x, v, 2)
=2 S M () + () + () 4 Vit .y 2).
J

Suppose V does not depend on t (i.e. there is only one
independent variable). Then the transformation t — t + €, with
x,y,x fixed is invariant. We have 7 =1, £ = 0.



Hence we have,

d

0=— £+ZI\/I ()2 + (7#)2 + (£)?) ==

dt —(K+ V).

Here K is the kinetic energy. So the total energy is preserved.



Geodesics of surfaces of revolution, cont.

Clairaut’'s Theorem revisited: In this case for the energy functional,
1 : .
£=S(F@)° + (f7 + g)(v)%).

fwelet u=u+e¢ v=v,t=t, then

L=L
Here we have 7 =0, €1 = 1,62 = 0.
p1 = f2i
So, we have
4 (i) =0
dt

along the geodesic.
In fact, this is just one of the E-L equations. Note that

sinf = (a/,e1) = (Xyi1 + X, v, ——) = fi.

Xy

So r(s)sinf(s) = f(a(s))sin0(s) = f2u.
D



Geodesics of surfaces of revolution, cont.

Let us analyse a geodesic a(s), 0 <'s < L < oo, on the surface of
revolution parametrized by arc length. Let us assume that

g(v) is increasing, i.e. g, > 0.

Let r(s) and 6(s) be as in Clairaut’'s Theorem. Let 6y = 6(0). We
may assume that

0< <3
By Clairaut's Theorem,
r(s)sinf(s) = R for some constant R > 0.



Note that r(s) > R.

Case 1: R =0, then § = /2 along «. So it is a meridian.

Case 2: R> 0. Thensinfp = R/r(0) < 1. So 0 < 6y < /2. So
« is going up. Then we must have f,(«(0)) # 0. Let us assume
that £,(«(0)) > 0. Hence initially, r(s) = f(a(s)) > R and it
continue to go up. We consider two cases:



Case 2(i) There is no parallel above a(0) with radius R. Then «
will go up all the way.

Case 2(ii) There is a parallel above «(0) so that the radius is R.
Let C be the first one above «(0). Then we have two more
subcases:

(ii)(a) C is a geodesic. Then « will approach to C but never
intersect C.

(ii)(b) C is not a geodesic, then a will touch C and bounces away.



To summarize, in the above settings, we have:

(i) If R =0, then « is a meridian.

(i) R > 0. Then geodesic will go up for all s, as long as r > R,
i.e. the z coordinate of « is increasing in s. Either o does not
come close to any parallel of radius R, and « will go up for all
s, or a will be close to a parallel C of radius R. Let C be the
first such parallel above ac. Then we have the following cases:

(a) C is a geodesic. Then o will not meet C and o will come
arbitrarily close to C without intersecting C.

(b) C is not a geodesic. Then there is a(sp) € C for some sy and
a will bounce off from C and will turn downward.




Proof of Noether's theorem

Proof: At ¢ =0,
d ~dt
0= <g_cdt)
__ﬁ~_ g(i?)
e Oe " dt
oL oL 8:;( oL
_ k _ _ 2= ra
=T okt ggk de ot L7
Now
-k -k
00 _0 00 dr,
de  Oe dt dt
=&k — ¢kt



So we have

L N L oL
a¢k§k o (k= o) + S+ L7






So
d oLC
-5 (e ”M
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So we have

9 o) ek g (06 d oL
dt (TH pkg)_(f T¢)<a¢k dt 94k
where or
e — bk —
pk_aqb'kv H = pxo L



