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Vector fields along «

Let a(t) be a regular curve on a regular surface M. A tangent
vector field w along « is a vector field w(t) such that:

e w(t) is smooth in t.

@ w(t) is a vector on the tangent space of M at «(t):
W(i‘) € Ta(t)(M)-
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Construction of a variation of o adapted to a given vector

field w along «

Consider a variation a(s, t) with |s| < d, t € [a, b] such that

Let a(t), t € [a, b] be a regular curve on M. A variation of «
with end points fixed is a map

a:(—0,0) x [a,b] = M

such that:
a(0,t) = a(t), the original curve.
a(s,a) = a(a),a(s, b) = a(b), i.e. end points fixed.

%\5:0 is called the variational vector field.

Given a vector field w along « so that w(a) = 0, w(b) =0,
want to find a variation a(s, t) so that ‘3—?\5:0 =w.



Construction, cont.

We only consider the case X(u!, u?) is a local parametrization and
a(t) = X(u'(t), v*(t)), t € [a, b].
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Construction, cont.

We only consider the case X(u!, u?) is a local parametrization and
a(t) = X(u'(t), v*(t)), t € [a, b].

o Let w(t) is a vector field along «.
o Then w(t) = Y7, a'(£)X;(ul(t), u3(t)).
o Let a(s,t) = X(ul(t) + sa'(t), u?(t) + sa(t)).



Construction, cont.

We only consider the case X(u!, u?) is a local parametrization and
a(t) = X(ul(t), u?(t)), t € [a, b].

Let w(t) is a vector field along a.

Then w(t) = 3.7, a'(£)X;(ul(¢), u?(t)).

Let a(s, t) = X(u(t) + sa'(t), u?(t) + sa’(t)).

gra(s, t)ls—o = X7y ()X(u (), v*(1)) = w(t).



First variation of arc length

Let M be a regular surface. Let « : [a, b] = M be a regular curve.
Then length functional is defined as

fa) = /ab|d|dt.

We want to compute the variation of ¢ around «. Consider a
variation a(s, t) with |s| < 0, t € [a, b] such that

e a(0,t) = a(t), the original curve.
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First variation of arc length

Let M be a regular surface. Let « : [a, b] = M be a regular curve.
Then length functional is defined as

b
:/ 6| dt.
a

We want to compute the variation of ¢ around «. Consider a
variation a(s, t) with |s| < 0, t € [a, b] such that
e a(0,t) = a(t), the original curve.
e afs,a) = a(a),a(s, b) = a(b), i.e. end points fixed.
o Let /(s) = {(as) f |as(t)|dt = f | &-a(s, t)|. Here
as(t) = a(s, t)
o Want to compute £ /(s)|s—o.



First variation of arc length, cont.

4(5)\5 o= / <g°t‘ ‘?)Ot‘> dt

= [ Ty e S
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b oo 0o, 1,0 [0a\ O«
- [l (as),atwt
At s =0,

° ‘?9‘;‘ = o/(t), here a(t) = «(0, t) is the original curve.
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First variation of arc length, cont.

4(5)\5 o= / <g°t‘ ‘?)Ot‘> dt

da da, 1, 0% da
_/ e ar) *asar o

b oo 0o, 1,0 [0a\ O«
- [l (as),atwt

o 5% = d/(t), here a(t) = a(0, t) is the original curve.

o 2 (%2) = w'(t), where w = 22|,_o.

NI



First variation of arc length, cont.

because w(a) = 0,w(b) = 0.



First variation of arc length, cont.

Let o be a regular curve in M. Then « is a critical point of the
length functional if and only if

(518 o

« is a geodesic if and only if it is a critical point of the length
functional and is parametrized proportional to arc length.

Proof: (Sketch) Since any vector field along o which vanishes at
the end points is realized by a variation of « with end points fixed,

we conclude that
_lda
(6 (%)) o

If |o/|=constant, then we have (”/)7 = 0. So it is.a geodesic.



Another definition of geodesic

We can define a geodesic to be a regular curve so that (i) it is a
critical point of the length functional; and (ii) it is parametrized
proportional to arc length.

In case «v only satisfies (i), we then have

d
(@7 =~ (It ') o

A regular curve « is said to be a pre-geodesic if ()7 is
proportional to its tangent vector o/. That is:

(O/I)T _ )\O/

for some smooth function A(t).



Equation for pre-geodesic in local coordinates

Suppose in local coordinates, a(t) = X(u'(t), u?(t)). Then
(@) = (uk + Thuiu) Xy, o = ukXy.
Hence the pre-geodesic equation is of the form:
uk 4 Thuil el = Auk

for k=1,2.



Consider the so-called action:
b .
s= [ cto.)d

Here ¢ = (¢',...,¢™) is a vector valued function of t, b= %gb.

Substitute ¢ for u, ¢ for z,

L=L(t;ut,...,u™ 2z ... z™) is called Lagrangian. We always
assume that £ is smooth in t, u, z in the domain under
consideration.

ﬁ(tv (ba ¢) = 'C(t; (;51, SR ¢m; ¢.17 T 7¢.m).



Consider m particles in three space with coordinates (x/, y/, 2/)
with mass m;. Consider

L= %ij ()2 + (7)) + ()] = V(t.x,y,2)
J

where V is the potential energy. Here ¢* are those x/, y/, 2/ which
depend only on t. ¢k are those X/, etc.



Instead of writing aau,ﬁ, we write
0
-L
¢’

etc. Let us take a variation of the action. Namely, let
n(t) = (n*(t),...,n™(t)) is a smooth (vector valued) function so
that n = 0 near a, b. Let

) |
S(e) :/ L(t b+ en, @+ en))dt



Euler-Lagrangian equations

/—/.h . .
Suppose L(t, ¢ + €n, (¢ + €n)) is smooth for € is small. Then

s [ (St g5 S )

K,

(S (- 4 (25)))

Let
oL d (0L
Ex=——7——|—
ook dt \ gk
for k=1,..., m. These are called Euler-Lagrange expression

(E.-L. expression).



As far as S§'(0) is concerned, instead of consider ¢(t) + en(t), it is
equivalent to consider smooth variation ¢(s, t), |s| < d, satisfying
the following

e ¢(0,t) = ¢(t), the original function;
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As far as S§'(0) is concerned, instead of consider ¢(t) + en(t), it is
equivalent to consider smooth variation ¢(s, t), |s| < d, satisfying
the following

e ¢(0,t) = ¢(t), the original function;

e ¢(s,a) = ¢(a), (s, b) = ¢(b) for all s; i.e., the values are
fixed at end points.

o Then ¢(s, t) = ¢(t) + sn(t) + O(s?) with n(a) = n(b) =0,
where n(t) = 2 ¢(s, t)|s=o.



Euler-Lagrangian equations, continued

Lemma

Let f =(fi,...,fm) be a vector valued continuous functions on

[a, b] such that
b
/ > fimdt =0
4k

for any smooth functions ny with compact supports in (a, b), i.e.
nx = 0 near a, b. Then f, =0 for all k.




Euler-Lagrangian equations, continued

¢ is said to be an extremal of the action S mentioned above, if for
any variation as above, we have 5’(0) = 0.

Theorem

A C? function ¢ = (¢*,...,¢™) is an extremal of S if and only if
it satisfies the E-L equations for L above: E, = 0, i.e.

oL _d (LY _
ook dt \ggk)

fork=1,...,m.




Example: As before, consider m particles in three space with
coordinates (x/, y/, z/) with mass m;. Let

L= ;ij () + (#)? + (Z)2] = V(t,x,y,2)

where V is the potential energy. Here ¢¥ are those x/, y/, z/ which
depend only on t. ¢k are those X/, etc.
E.-L. expressions are given by

ov d?x/ A d2yj_ _87V_m'd2zj
0z 7 dt2’

Elj = —aiyj—mjﬁy 3j =

o0 e T



Application to geodesic: energy of a curve

Let M be a regular surface and o be a smooth curve defined on
[a, b]. Then energy of « is defined to by

b
E() = ; / (o, o) dt. (1)

(a/,a’) is called the energy density.

Remark: With the above notation, (¢(a))? < (b — a)E(c), and
equality holds if and only if « is parametrized proportional to arc
length.



Application to geodesic: energy of a curve, cont.

Suppose « is a regular curve defined on [a, b]. « is an extremal of
E if and only if « is a geodesic.

Proof: Let af(s, t) be a variation of « with end points fixed. Let
E(s) be the energy of as(t) = (s, t). Thenats=0

b 920 O b
E'(s :/ Ja o :_/ w, o) dt
(s) i (3ot Br) a< )

where w = 3 2|s—0. Hence a is an extremal if and only if
(@”)T =0. That is, a geodesic.



E-L equations are equivalent to geodesic equations

To find the E-L equations for the energy functional in local
parametrization: X(u?, u?) with first fundamental form gj;. Then
Lagrangian of the energy functional is:

1 -
L= Eg,'ju’uf.
Then (denote F by fi etc):

8uk£ 2gU culw

3u’<£ giku'’

0 C
dt <a(z'k E) = giku' + gik,u'u’

Hence E-L equations are:

1 e -
58ij kU w— <gfku’ + Gik,1u U’) =0.

for k=1,2.



E-L equations are equivalent to geodesic equations, cont.

8ikU' + Gpk,quIuP — Egpq,kupuq =0.

Hence 1
ul + Egik (28pk,quIUP — gpgkuPuT) = 0.

oLk o .o o
u + Eg (gpkzququp + qu,pupuq - gpq’kupuq) = O

Finally, we have ) '
u' 4+ T uPud = 0.



2

Consider the surface of revolution u! <+ u, u? < v:

X(u,v) = (f(v)cosu,f(v)sinu,g(v))
f > 0. We want to find the equations of geodesics.
Method 1: g1 = 2, g12 = 0, g2 = (f')? + (&’)?. The Christoffel
symbols are given by
i fr
1 _qr2 _ 1 _
M1 =0,T{; = TRt (@) [y = 72
f/f‘/l + g/g//
=0, =0,T%=——>°_.
=0 =08 = (e

Hence geodesic equations are
/

f'2

u+ uv =0

and ff/ ) flf” +g/g//

2, o
M2+ 2" " (P +@)2’
D

vV —



Example, cont.

Method 2: On the other hand, the % of the energy density of a
curve is given by

L= S(P@2 + (7P + ()2)?)

Then 9 9
%»C_O, 8 E: f/l:l2+(f/f”+g,g”)
0 0 .
o=, L= (P + ().
The E-L equations are:
d, 5.
E(f LI) 07

and

PP+ (P74 g8~ (7 + (())7) = 0



d
~“(f%i) =

and

i + (FF + g'g")v? — % (((FP+((g"))v) =0

Compare with previous computations:

2fF
and / 1 £ ! I
ff o ff"+g'g

vV —

P+ @R R



Consider the polar coordinates of the plane
X(r,0) = (rcosf,rsinf,0). Let r < ul,0 < u? Then
gi1=1,g10=0,g0 = r2. Then % 5 of the energy den5|ty is given by

1 2\2 2(0\2
L= (17 +PO)).

Then 9 5
9 o2 9,
arﬁ r(6)?, 8'r£ F;
0 8 9

So E-L equations are



F—r(0)?=0
0+ 2i0 =0.

These are geodesic equations. Hence one can obtain rf-j- by
comparing with the geodesic equations.



