Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field **w** along α is a vector field **w**(*t*) such that:

 \leftarrow \Box

 $2Q$

Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field **w** along α is a vector field **w**(*t*) such that: $\bullet \mathbf{w}(t)$ is smooth in t.

 $2Q$

Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field **w** along α is a vector field **w**(*t*) such that:

つくい

- $\bullet \mathbf{w}(t)$ is smooth in t.
- w(t) is a vector on the tangent space of M at $\alpha(t)$: ${\sf w}(t)\in \mathcal{T}_{\alpha(t)}(\mathsf{M}).$

Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that Let $\alpha(t)$, $t \in [a, b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$
\alpha:(-\delta,\delta)\times[a,b]\to M
$$

へのへ

Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that Let $\alpha(t)$, $t \in [a, b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$
\alpha:(-\delta,\delta)\times[a,b]\to M
$$

へのへ

such that:

 $\alpha(0, t) = \alpha(t)$, the original curve.

Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that Let $\alpha(t)$, $t \in [a, b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$
\alpha:(-\delta,\delta)\times[a,b]\to M
$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.

Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that Let $\alpha(t)$, $t \in [a, b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$
\alpha:(-\delta,\delta)\times[a,b]\to M
$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- $\partial \alpha$ $\frac{\partial \alpha}{\partial s}|_{s=0}$ is called the variational vector field.

Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that Let $\alpha(t)$, $t \in [a, b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$
\alpha:(-\delta,\delta)\times[a,b]\to M
$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- $\partial \alpha$ $\frac{\partial \alpha}{\partial s}|_{s=0}$ is called the variational vector field.
- Given a vector field **w** along α so that $w(a) = 0$, $w(b) = 0$, want to find a variation $\alpha(s,t)$ so that $\frac{\partial \alpha}{\partial s}|_{s=0}=\mathsf{w}.$

つくい

つくい

• Then
$$
\mathbf{w}(t) = \sum_{i=1}^{2} a^i(t) \mathbf{X}_i(u^1(t), u^2(t)).
$$

つくい

- Then $\mathbf{w}(t) = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)).$
- Let $\alpha(s,t) = \mathbf{X}(u^1(t) + sa^1(t), u^2(t) + sa^2(t)).$

つくい

- Then $\mathbf{w}(t) = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)).$
- Let $\alpha(s,t) = \mathbf{X}(u^1(t) + sa^1(t), u^2(t) + sa^2(t)).$
- ∂s $\frac{\partial s}{\partial s} \alpha(s, t)|_{s=0} = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)) = \mathbf{w}(t).$

$$
\ell(\alpha)=\int_a^b|\dot\alpha|dt.
$$

へのへ

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that

 $\alpha(0, t) = \alpha(t)$, the original curve.

$$
\ell(\alpha)=\int_a^b|\dot\alpha|dt.
$$

へのへ

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.

$$
\ell(\alpha)=\int_a^b|\dot\alpha|dt.
$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- Let $\ell(s) = \ell(\alpha_s) = \int_a^b |\dot{\alpha}_s(t)| dt = \int_a^b |\frac{\partial}{\partial s}|^2$ $\frac{\partial}{\partial t}\alpha(\mathsf{s},t)|$. Here $\alpha_{s}(t) = \alpha(s,t)$

∽≏ດ

$$
\ell(\alpha)=\int_a^b|\dot\alpha|dt.
$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s, t)$ with $|s| < \delta$, $t \in [a, b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- Let $\ell(s) = \ell(\alpha_s) = \int_a^b |\dot{\alpha}_s(t)| dt = \int_a^b |\frac{\partial}{\partial s}|^2$ $\frac{\partial}{\partial t}\alpha(\mathsf{s},t)|$. Here $\alpha_{s}(t) = \alpha(s,t)$
- Want to compute $\frac{d}{ds}\ell(s)|_{s=0}$.

First variation of arc length, cont.

$$
\frac{d}{ds}\ell(s)|_{s=0} = \frac{d}{ds}\int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{\frac{1}{2}}dt
$$
\n
$$
= \int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{-\frac{1}{2}}\langle\frac{\partial^2\alpha}{\partial s\partial t},\frac{\partial\alpha}{\partial t}\rangle dt
$$
\n
$$
= \int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{-\frac{1}{2}}\langle\frac{\partial}{\partial t}\left(\frac{\partial\alpha}{\partial s}\right),\frac{\partial\alpha}{\partial t}\rangle dt
$$

At
$$
s = 0
$$
,
\n• $\frac{\partial \alpha}{\partial t} = \alpha'(t)$, here $\alpha(t) = \alpha(0, t)$ is the original curve.

目 299 4 0 F ■ ▶ ◀ 重 Ξ. \rightarrow × ъ.

First variation of arc length, cont.

$$
\frac{d}{ds}\ell(s)|_{s=0} = \frac{d}{ds}\int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{\frac{1}{2}}dt
$$
\n
$$
= \int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{-\frac{1}{2}}\langle\frac{\partial^2\alpha}{\partial s\partial t},\frac{\partial\alpha}{\partial t}\rangle dt
$$
\n
$$
= \int_{a}^{b}\langle\frac{\partial\alpha}{\partial t},\frac{\partial\alpha}{\partial t}\rangle^{-\frac{1}{2}}\langle\frac{\partial}{\partial t}\left(\frac{\partial\alpha}{\partial s}\right),\frac{\partial\alpha}{\partial t}\rangle dt
$$

At $s=0$,

- $\frac{\partial \alpha}{\partial t} = \alpha'(t)$, here $\alpha(t) = \alpha(0,t)$ is the original curve.
- ∂ $\frac{\partial}{\partial t}$ $\big(\frac{\partial \alpha}{\partial \mathsf{s}}$ $\frac{\partial \alpha}{\partial s}) = \mathsf{w}'(t)$, where $\mathsf{w} = \frac{\partial \alpha}{\partial s}$ $\frac{\partial \alpha}{\partial s}|_{s=0}$.

$$
\frac{d}{ds}\ell(s)|_{s=0} = \int_{a}^{b} \langle \mathbf{w}', |\alpha'|^{-\frac{1}{2}} \frac{d\alpha}{dt} \rangle dt
$$

$$
= -\int_{a}^{b} \langle \mathbf{w}, \frac{d}{dt}\left(|\alpha'|^{-\frac{1}{2}} \frac{d\alpha}{dt}\right) \rangle dt
$$

 \leftarrow

つくへ

경제 扂

because $\mathbf{w}(a) = 0, \mathbf{w}(b) = 0.$

Proposition

Let α be a regular curve in M. Then α is a critical point of the length functional if and only if

$$
\left(\frac{d}{dt}\left(|\alpha'|^{-\frac{1}{2}}\frac{d\alpha}{dt}\right)\right)^T=0.
$$

 α is a geodesic if and only if it is a critical point of the length functional and is parametrized proportional to arc length.

Proof: (Sketch) Since any vector field along α which vanishes at the end points is realized by a variation of α with end points fixed, we conclude that

$$
\left(\frac{d}{dt}\left(|\alpha'|^{-\frac{1}{2}}\frac{d\alpha}{dt}\right)\right)^T=0.
$$

If $|\alpha'|$ =constant, then we have $(\alpha'')^T = 0$. [So](#page-18-0) [it](#page-20-0) [is](#page-18-0) [a](#page-19-0) [ge](#page-0-0)[od](#page-40-0)[esi](#page-0-0)[c.](#page-40-0)

We can define a geodesic to be a regular curve so that (i) it is a critical point of the length functional; and (ii) it is parametrized proportional to arc length.

In case α only satisfies (i), we then have

$$
(\alpha'')^{\mathsf{T}} = -\left(|\alpha'|^{\frac{1}{2}}\frac{d}{dt}|\alpha'|^{-\frac{1}{2}}\right)\alpha'.
$$

A regular curve α is said to be a pre-geodesic if $(\alpha'')^{\mathcal{T}}$ is proportional to its tangent vector $\alpha'.$ That is:

$$
(\alpha'')^{\mathsf{T}} = \lambda \alpha'
$$

for some smooth function $\lambda(t)$.

Suppose in local coordinates, $\alpha(t) = \mathsf{X}(u^1(t), u^2(t))$. Then

$$
(\alpha'')^{\mathsf{T}} = (\mu^k + \Gamma_{ij}^k u^i u^j) \mathbf{X}_k, \ \alpha' = u^k \mathbf{X}_k.
$$

Hence the pre-geodesic equation is of the form:

$$
u^k + \Gamma_{ij}^k u^i u^j = \lambda u^k
$$

つくい

for $k = 1, 2$.

Consider the so-called action:

$$
S=\int_{a}^{b}\mathcal{L}(t,\phi,\dot{\phi})dt
$$

Here $\phi=(\phi^1,\ldots,\phi^m)$ is a vector valued function of t , $\dot{\phi}=\frac{d}{dt}\phi$. Substitute ϕ for u , $\dot{\phi}$ for z , $\mathcal{L}=\mathcal{L}(t;u^1,\ldots,u^m;z^1,\ldots,z^m)$ is called Lagrangian. We always assume that $\mathcal L$ is smooth in t, u, z in the domain under consideration.

$$
\mathcal{L}(t, \phi, \dot{\phi}) = \mathcal{L}(t; \phi^1, \dots, \phi^m; \dot{\phi}^1, \dots, \dot{\phi}^m).
$$

つくい

Consider m particles in three space with coordinates (x^j, y^j, z^j) with mass \mathfrak{m}_j . Consider

$$
\mathcal{L} = \frac{1}{2} \sum_{j} m_j \left[(\dot{x}^j)^2 + (\dot{y}^j)^2 + (\dot{z}^j)^2 \right] - V(t, x, y, z)
$$

where V is the potential energy. Here ϕ^k are those $\mathsf{x}^j, \mathsf{y}^j, \mathsf{z}^j$ which depend only on $t.$ ϕ^k are those $\dot{\mathsf{x}}^j$, etc.

Instead of writing $\frac{\partial}{\partial u^i}\mathcal{L}$, we write

etc. Let us take a variation of the action. Namely, let $\eta(t)=(\eta^1(t),\ldots,\eta^m(t))$ is a smooth (vector valued) function so that $\eta = 0$ near a, b. Let

∂ $\frac{\delta}{\partial \phi^i} \mathcal{L}$

$$
S(\epsilon) = \int_{a}^{b} \mathcal{L}(t, \phi + \epsilon \eta, \overbrace{(\phi + \epsilon \eta)}^{\text{max}}) dt
$$

 $2Q$

Euler-Lagrangian equations

Suppose $\mathcal{L}(t,\phi+\epsilon\eta, \overbrace{(\phi+\epsilon\eta)})$ is smooth for ϵ is small. Then

$$
\frac{d}{d\epsilon}S(\epsilon)|_{\epsilon=0} = \int_{a}^{b} \left(\sum_{k} \eta^{k} \frac{\partial \mathcal{L}}{\partial \phi^{k}} + \sum_{k,\mu} \dot{\eta}^{k} \frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}} \right) dt
$$

$$
= \int_{a}^{b} \left(\sum_{k} \eta^{k} \left(\frac{\partial \mathcal{L}}{\partial \phi^{k}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}} \right) \right) \right) dx.
$$

Let

$$
E_k =: \frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right)
$$

for $k = 1, \ldots, m$. These are called Euler-Lagrange expression (E.-L. expression).

As far as $S'(0)$ is concerned, instead of consider $\phi(t)+\epsilon\eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

 $2Q$

 $\phi(0,t) = \phi(t)$, the original function;

As far as $S'(0)$ is concerned, instead of consider $\phi(t)+\epsilon\eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

- $\phi(0,t) = \phi(t)$, the original function;
- $\phi(s, a) = \phi(a), \phi(s, b) = \phi(b)$ for all s; i.e., the values are fixed at end points.

へのへ

As far as $S'(0)$ is concerned, instead of consider $\phi(t)+\epsilon\eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

- $\phi(0,t) = \phi(t)$, the original function;
- $\phi(s, a) = \phi(a), \phi(s, b) = \phi(b)$ for all s; i.e., the values are fixed at end points.
- Then $\phi(s,t) = \phi(t) + s\eta(t) + O(s^2)$ with $\eta(a) = \eta(b) = 0$, where $\eta(t) = \frac{\partial}{\partial s}\phi(s,t)|_{s=0}$.

つくい

Lemma

Let $f = (f_1, \ldots, f_m)$ be a vector valued continuous functions on $[a, b]$ such that

$$
\int_{a}^{b} \sum_{k} f_{k} \eta_{k} dt = 0
$$

for any smooth functions η_k with compact supports in (a, b), i.e. $\eta_k = 0$ near a, b. Then $f_k = 0$ for all k.

へのへ

 ϕ is said to be an extremal of the action S mentioned above, if for any variation as above, we have $S'(0)=0.5$

Theorem

A C 2 function $\phi=(\phi^1,\ldots,\phi^m)$ is an extremal of S if and only if it satisfies the E-L equations for L above: $E_k = 0$, i.e.

$$
\frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right) = 0
$$

for $k = 1, \ldots, m$.

Example: As before, consider *m* particles in three space with coordinates (x^j,y^j,z^j) with mass \mathfrak{m}_j . Let

$$
\mathcal{L} = \frac{1}{2} \sum_j \mathfrak{m}_j \left[(\dot{x}^j)^2 + (\dot{y}^j)^2 + (\dot{z}^j)^2 \right] - V(t, x, y, z)
$$

where V is the potential energy. Here ϕ^k are those $\mathsf{x}^j, \mathsf{y}^j, \mathsf{z}^j$ which depend only on $t.$ ϕ^k are those $\dot{\mathsf{x}}^j$, etc. E.-L. expressions are given by

$$
\mathcal{E}_{1j}=-\frac{\partial V}{\partial x^j}-\mathfrak{m}_j\frac{d^2x^j}{dt^2};\mathcal{E}_{2j}=-\frac{\partial V}{\partial y^j}-\mathfrak{m}_j\frac{d^2y^j}{dt^2};\mathcal{E}_{3j}=-\frac{\partial V}{\partial z^j}-\mathfrak{m}_j\frac{d^2z^j}{dt^2}.
$$

Let M be a regular surface and α be a smooth curve defined on [a, b]. Then energy of α is defined to by

$$
E(\alpha) = \frac{1}{2} \int_{a}^{b} \langle \alpha', \alpha' \rangle dt. \tag{1}
$$

 $\langle \alpha', \alpha' \rangle$ is called the energy density.

Remark: With the above notation, $(\ell(\alpha))^2 \le (b - a)E(\alpha)$, and equality holds if and only if α is parametrized proportional to arc length.

Theorem

Suppose α is a regular curve defined on [a, b]. α is an extremal of E if and only if α is a geodesic.

Proof: Let $\alpha(s, t)$ be a variation of α with end points fixed. Let $E(s)$ be the energy of $\alpha_s(t) = \alpha(s,t)$. Then at $s = 0$

$$
E'(s) = \int_{a}^{b} \langle \frac{\partial^2 \alpha}{\partial s \partial t}, \frac{\partial \alpha}{\partial t} \rangle = -\int_{a}^{b} \langle \mathbf{w}, \alpha'' \rangle dt
$$

where ${\bf w}=\frac{\partial \alpha}{\partial {\bf s}}$ $\frac{\partial \alpha}{\partial s}|_{s=0}$. Hence α is an extremal if and only if $(\alpha'')^{\mathsf{T}} = 0$. That is, a geodesic.

E-L equations are equivalent to geodesic equations

To find the E-L equations for the energy functional in local parametrization: $\mathbf{X}(u^1,u^2)$ with first fundamental form g_{ij} . Then Lagrangian of the energy functional is:

$$
\mathcal{L}=\frac{1}{2}g_{ij}\dot{u}^i\dot{u}^j.
$$

Then (denote $\frac{\partial f}{\partial u^k}$ by $f_{,k}$ etc):

$$
\begin{cases}\n\frac{\partial}{\partial u^k} \mathcal{L} = \frac{1}{2} g_{ij,k} u^i u^j \\
\frac{\partial}{\partial u^k} \mathcal{L} = g_{ik} u^i \\
\frac{d}{dt} \left(\frac{\partial}{\partial u^k} \mathcal{L} \right) = g_{ik} u^i + g_{ik,l} u^l u^j\n\end{cases}
$$

Hence E-L equations are:

$$
\frac{1}{2}g_{ij,k}u^i u^j - \left(g_{ik}u^i + g_{ik,l}u^l u^i\right) = 0.
$$

for $k = 1, 2$.

メ 御 メ メ ヨ メ メ ヨ メー つくい

E-L equations are equivalent to geodesic equations, cont.

$$
g_{ik}u^{i}+g_{pk,q}u^{q}u^{p}-\frac{1}{2}g_{pq,k}u^{p}u^{q}=0.
$$

Hence

$$
\ddot{u'} + \frac{1}{2} g^{ik} \left(2g_{pk,q} \dot{u^q} \dot{u^p} - g_{pq,k} \dot{u^p} \dot{u^q} \right) = 0.
$$

Or

$$
\ddot{u'} + \frac{1}{2} g^{ik} \left(g_{pk,q} u^q u^p + g_{qk,p} u^p u^q - g_{pq,k} u^p u^q \right) = 0.
$$

Finally, we have

$$
\ddot{u^i} + \Gamma^i_{pq} u^p u^q = 0.
$$

 $2Q$ \leftarrow A

Example

Consider the surface of revolution $u^1 \leftrightarrow u$, $u^2 \leftrightarrow v$:

$$
\mathbf{X}(u,v)=(f(v)\cos u,f(v)\sin u,g(v))
$$

 $f > 0$. We want to find the equations of geodesics. <u>Method 1</u>: $g_{11} = f^2$, $g_{12} = 0$, $g_{22} = (f')^2 + (g')^2$. The Christoffel symbols are given by

$$
\Gamma_{11}^1 = 0, \Gamma_{11}^2 = -\frac{ff'}{(f')^2 + (g')^2}, \Gamma_{12}^1 = \frac{ff'}{f^2};
$$

$$
\Gamma_{12}^2 = 0, \Gamma_{22}^1 = 0, \Gamma_{22}^2 = \frac{f'f'' + g'g''}{(f')^2 + (g')^2}.
$$

Hence geodesic equations are

$$
\ddot{u}+\frac{2ff'}{f^2}\dot{u}\dot{v}=0
$$

and

$$
\ddot{v} - \frac{ff'}{(f')^2 + (g')^2} \dot{u}^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} \dot{v}^2 = 0.
$$

Example, cont.

<u>Method 2</u>: On the other hand, the $\frac{1}{2}$ of the energy density of a curve is given by

$$
\mathcal{L} = \frac{1}{2} (f^2(\dot{u})^2 + ((f')^2 + ((g')^2)(\dot{v})^2).
$$

Then

$$
\frac{\partial}{\partial u} \mathcal{L} = 0, \ \frac{\partial}{\partial v} \mathcal{L} = ff' \dot{u}^2 + (f' f'' + g' g'') \dot{v}^2; \n\frac{\partial}{\partial \dot{u}} \mathcal{L} = f^2 \dot{u}, \ \frac{\partial}{\partial \dot{v}} \mathcal{L} = ((f')^2 + ((g')^2) \dot{v}.
$$

The E-L equations are:

$$
\frac{d}{dt}(f^2\dot{u})=0,
$$

and

$$
ff'i^{2} + (f'f'' + g'g'')\dot{v}^{2} - \frac{d}{dt} \left(((f')^{2} + ((g')^{2})\dot{v}\right) = 0
$$

$$
\frac{d}{dt}(f^2\dot{u})=0,
$$

and

$$
ff'\dot{u}^2 + (f'f'' + g'g'')\dot{v}^2 - \frac{d}{dt}(((f')^2 + ((g')^2)\dot{v}) = 0
$$

Compare with previous computations:

$$
\ddot{u}+\frac{2ff'}{f^2}\dot{u}\dot{v}=0
$$

and

$$
\ddot{v} - \frac{ff'}{(f')^2 + (g')^2} \dot{u}^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} \dot{v}^2 = 0.
$$

Example

Consider the polar coordinates of the plane $\mathsf{X}(r,\theta)=(r\cos\theta, r\sin\theta,0).$ Let $r\leftrightarrow u^1, \theta\leftrightarrow u^2.$ Then $g_{11} = 1, g_{12} = 0, g_{22} = r^2$. Then $\frac{1}{2}$ of the energy density is given by

$$
\mathcal{L} = \frac{1}{2}((r)^2 + r^2(\dot{\theta})^2).
$$

Then

$$
\frac{\partial}{\partial r}\mathcal{L} = r(\dot{\theta})^2, \ \frac{\partial}{\partial \dot{r}}\mathcal{L} = \dot{r};
$$

$$
\frac{\partial}{\partial \theta}\mathcal{L} = 0, \ \frac{\partial}{\partial \dot{\theta}}\mathcal{L} = r^2\dot{\theta}.
$$

So E-L equations are

$$
\begin{cases}\nr(\dot{\theta})^2 - \frac{d}{dt}\dot{r} = 0 \\
-\frac{d}{dt}\left(r^2\dot{\theta}\right) = 0.\n\end{cases}
$$

つへへ

$$
\begin{cases}\n\ddot{r} - r(\dot{\theta})^2 = 0 \\
\ddot{\theta} + \frac{2}{r}\dot{r}\dot{\theta} = 0.\n\end{cases}
$$

4 0 F

 $2Q$

∢ 重 ≯

扂

These are geodesic equations. Hence one can obtain $\mathsf{\Gamma}_{ij}^k$ by comparing with the geodesic equations.