Vector fields along α

Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field \mathbf{w} along α is a vector field $\mathbf{w}(t)$ such that:

Vector fields along α

Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field \mathbf{w} along α is a vector field $\mathbf{w}(t)$ such that:

• $\mathbf{w}(t)$ is smooth in t.

Vector fields along α

Let $\alpha(t)$ be a regular curve on a regular surface M. A tangent vector field \mathbf{w} along α is a vector field $\mathbf{w}(t)$ such that:

- $\mathbf{w}(t)$ is smooth in t.
- $\mathbf{w}(t)$ is a vector on the tangent space of M at $\alpha(t)$: $\mathbf{w}(t) \in T_{\alpha(t)}(M)$.

Consider a variation $\alpha(s,t)$ with $|s|<\delta$, $t\in[a,b]$ such that Let $\alpha(t)$, $t\in[a,b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$\alpha: (-\delta, \delta) \times [a, b] \to M$$

Consider a variation $\alpha(s,t)$ with $|s|<\delta$, $t\in[a,b]$ such that Let $\alpha(t)$, $t\in[a,b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$\alpha: (-\delta, \delta) \times [a, b] \to M$$

such that:

• $\alpha(0, t) = \alpha(t)$, the original curve.

Consider a variation $\alpha(s,t)$ with $|s|<\delta$, $t\in[a,b]$ such that Let $\alpha(t)$, $t\in[a,b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$\alpha: (-\delta, \delta) \times [a, b] \to M$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.

Consider a variation $\alpha(s,t)$ with $|s|<\delta$, $t\in[a,b]$ such that Let $\alpha(t)$, $t\in[a,b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$\alpha: (-\delta, \delta) \times [a, b] \to M$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- $\frac{\partial \alpha}{\partial s}|_{s=0}$ is called the variational vector field.

Consider a variation $\alpha(s,t)$ with $|s|<\delta$, $t\in[a,b]$ such that Let $\alpha(t)$, $t\in[a,b]$ be a regular curve on M. A variation of α with end points fixed is a map

$$\alpha: (-\delta, \delta) \times [a, b] \to M$$

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- $\frac{\partial \alpha}{\partial s}|_{s=0}$ is called the variational vector field.
- Given a vector field \mathbf{w} along α so that $\mathbf{w}(a) = 0$, $\mathbf{w}(b) = 0$, want to find a variation $\alpha(s,t)$ so that $\frac{\partial \alpha}{\partial s}|_{s=0} = \mathbf{w}$.

We only consider the case $\mathbf{X}(u^1, u^2)$ is a local parametrization and $\alpha(t) = \mathbf{X}(u^1(t), u^2(t)), t \in [a, b].$

• Let $\mathbf{w}(t)$ is a vector field along α .

We only consider the case $\mathbf{X}(u^1, u^2)$ is a local parametrization and $\alpha(t) = \mathbf{X}(u^1(t), u^2(t)), t \in [a, b].$

- Let $\mathbf{w}(t)$ is a vector field along α .
- Then $\mathbf{w}(t) = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)).$

We only consider the case $\mathbf{X}(u^1, u^2)$ is a local parametrization and $\alpha(t) = \mathbf{X}(u^1(t), u^2(t)), t \in [a, b].$

- Let $\mathbf{w}(t)$ is a vector field along α .
- Then $\mathbf{w}(t) = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)).$
- Let $\alpha(s,t) = \mathbf{X}(u^1(t) + sa^1(t), u^2(t) + sa^2(t)).$

We only consider the case $\mathbf{X}(u^1, u^2)$ is a local parametrization and $\alpha(t) = \mathbf{X}(u^1(t), u^2(t)), t \in [a, b].$

- Let $\mathbf{w}(t)$ is a vector field along α .
- Then $\mathbf{w}(t) = \sum_{i=1}^{2} a^{i}(t) \mathbf{X}_{i}(u^{1}(t), u^{2}(t)).$
- Let $\alpha(s,t) = \mathbf{X}(u^1(t) + sa^1(t), u^2(t) + sa^2(t)).$
- $\frac{\partial s}{\partial s}\alpha(s,t)|_{s=0} = \sum_{i=1}^2 a^i(t)\mathbf{X}_i(u^1(t),u^2(t)) = \mathbf{w}(t).$

Let M be a regular surface. Let $\alpha:[a,b]\to M$ be a regular curve. Then length functional is defined as

$$\ell(\alpha) = \int_a^b |\dot{\alpha}| dt.$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that

• $\alpha(0, t) = \alpha(t)$, the original curve.

Let M be a regular surface. Let $\alpha: [a,b] \to M$ be a regular curve. Then length functional is defined as

$$\ell(\alpha) = \int_a^b |\dot{\alpha}| dt.$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.

Let M be a regular surface. Let $\alpha: [a,b] \to M$ be a regular curve. Then length functional is defined as

$$\ell(\alpha) = \int_a^b |\dot{\alpha}| dt.$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- Let $\ell(s) = \ell(\alpha_s) = \int_a^b |\dot{\alpha}_s(t)| dt = \int_a^b |\frac{\partial}{\partial t}\alpha(s,t)|$. Here $\alpha_s(t) = \alpha(s,t)$

Let M be a regular surface. Let $\alpha: [a,b] \to M$ be a regular curve. Then length functional is defined as

$$\ell(\alpha) = \int_a^b |\dot{\alpha}| dt.$$

We want to compute the variation of ℓ around α . Consider a variation $\alpha(s,t)$ with $|s| < \delta$, $t \in [a,b]$ such that

- $\alpha(0, t) = \alpha(t)$, the original curve.
- $\alpha(s, a) = \alpha(a), \alpha(s, b) = \alpha(b)$, i.e. end points fixed.
- Let $\ell(s) = \ell(\alpha_s) = \int_a^b |\dot{\alpha}_s(t)| dt = \int_a^b |\frac{\partial}{\partial t}\alpha(s,t)|$. Here $\alpha_s(t) = \alpha(s,t)$
- Want to compute $\frac{d}{ds}\ell(s)|_{s=0}$.

$$\begin{split} \frac{d}{ds}\ell(s)|_{s=0} &= \frac{d}{ds} \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{\frac{1}{2}} dt \\ &= \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{-\frac{1}{2}} \langle \frac{\partial^{2} \alpha}{\partial s \partial t}, \frac{\partial \alpha}{\partial t} \rangle dt \\ &= \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{-\frac{1}{2}} \langle \frac{\partial}{\partial t} \left(\frac{\partial \alpha}{\partial s} \right), \frac{\partial \alpha}{\partial t} \rangle dt \end{split}$$

At s=0,

• $\frac{\partial \alpha}{\partial t} = \alpha'(t)$, here $\alpha(t) = \alpha(0,t)$ is the original curve.

$$\begin{split} \frac{d}{ds}\ell(s)|_{s=0} &= \frac{d}{ds} \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{\frac{1}{2}} dt \\ &= \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{-\frac{1}{2}} \langle \frac{\partial^{2} \alpha}{\partial s \partial t}, \frac{\partial \alpha}{\partial t} \rangle dt \\ &= \int_{a}^{b} \langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \rangle^{-\frac{1}{2}} \langle \frac{\partial}{\partial t} \left(\frac{\partial \alpha}{\partial s} \right), \frac{\partial \alpha}{\partial t} \rangle dt \end{split}$$

At s=0,

- $\frac{\partial \alpha}{\partial t} = \alpha'(t)$, here $\alpha(t) = \alpha(0,t)$ is the original curve.
- $\frac{\partial}{\partial t}\left(\frac{\partial \alpha}{\partial s}\right) = \mathbf{w}'(t)$, where $\mathbf{w} = \frac{\partial \alpha}{\partial s}|_{s=0}$.

$$\frac{d}{ds}\ell(s)|_{s=0} = \int_{a}^{b} \langle \mathbf{w}', |\alpha'|^{-\frac{1}{2}} \frac{d\alpha}{dt} \rangle dt$$

$$= -\int_{a}^{b} \langle \mathbf{w}, \frac{d}{dt} \left(|\alpha'|^{-\frac{1}{2}} \frac{d\alpha}{dt} \right) \rangle dt$$

because w(a) = 0, w(b) = 0.

Proposition

Let α be a regular curve in M. Then α is a critical point of the length functional if and only if

$$\left(\frac{d}{dt}\left(|\alpha'|^{-\frac{1}{2}}\frac{d\alpha}{dt}\right)\right)^T=0.$$

 α is a geodesic if and only if it is a critical point of the length functional and is parametrized proportional to arc length.

Proof: (Sketch) Since any vector field along α which vanishes at the end points is realized by a variation of α with end points fixed, we conclude that

$$\left(\frac{d}{dt}\left(|\alpha'|^{-\frac{1}{2}}\frac{d\alpha}{dt}\right)\right)^T=0.$$

If $|\alpha'|$ = constant, then we have $(\alpha'')^T = 0$. So it is a geodesic.

Another definition of geodesic

We can define a geodesic to be a regular curve so that (i) it is a critical point of the length functional; and (ii) it is parametrized proportional to arc length.

In case α only satisfies (i), we then have

$$(\alpha'')^T = -\left(|\alpha'|^{\frac{1}{2}}\frac{d}{dt}|\alpha'|^{-\frac{1}{2}}\right)\alpha'.$$

A regular curve α is said to be a pre-geodesic if $(\alpha'')^T$ is proportional to its tangent vector α' . That is:

$$(\alpha'')^T = \lambda \alpha'$$

for some smooth function $\lambda(t)$.

Equation for pre-geodesic in local coordinates

Suppose in local coordinates, $\alpha(t) = \mathbf{X}(u^1(t), u^2(t))$. Then

$$(\alpha'')^T = (\ddot{u^k} + \Gamma^k_{ij}\dot{u^i}\dot{u^j})\mathbf{X}_k, \quad \alpha' = \dot{u^k}\mathbf{X}_k.$$

Hence the pre-geodesic equation is of the form:

$$\ddot{u^k} + \Gamma^k_{ij}\dot{u^i}\dot{u^j} = \lambda\dot{u^k}$$

for k = 1, 2.

Action

Consider the so-called action:

$$S = \int_a^b \mathcal{L}(t, \phi, \dot{\phi}) dt$$

Here $\phi=(\phi^1,\ldots,\phi^m)$ is a vector valued function of $t,\ \dot{\phi}=\frac{d}{dt}\phi.$ Substitute ϕ for $u,\ \dot{\phi}$ for z,

 $\mathcal{L} = \mathcal{L}(t; u^1, \dots, u^m; z^1, \dots, z^m)$ is called Lagrangian. We always assume that \mathcal{L} is smooth in t, u, z in the domain under consideration.

$$\mathcal{L}(t,\phi,\dot{\phi}) = \mathcal{L}(t;\phi^1,\ldots,\phi^m;\dot{\phi^1},\cdots,\dot{\phi^m}).$$

Example

Consider m particles in three space with coordinates (x^j, y^j, z^j) with mass \mathfrak{m}_j . Consider

$$\mathcal{L} = \frac{1}{2} \sum_{j} \mathfrak{m}_{j} \left[(\dot{x}^{j})^{2} + (\dot{y}^{j})^{2} + (\dot{z}^{j})^{2} \right] - V(t, x, y, z)$$

where V is the potential energy. Here ϕ^k are those x^j, y^j, z^j which depend only on t. $\dot{\phi}^k$ are those \dot{x}^j , etc.

Variation

Instead of writing $\frac{\partial}{\partial u^i}\mathcal{L}$, we write

$$\frac{\partial}{\partial \phi^i} \mathcal{L}$$

etc. Let us take a variation of the action. Namely, let $\eta(t)=(\eta^1(t),\ldots,\eta^m(t))$ is a smooth (vector valued) function so that $\eta=0$ near a,b. Let

$$S(\epsilon) = \int_{a}^{b} \mathcal{L}(t, \phi + \epsilon \eta, \overbrace{(\phi + \epsilon \eta)}) dt$$

Euler-Lagrangian equations

Suppose $\mathcal{L}(t,\phi+\epsilon\eta,\widetilde{(\phi+\epsilon\eta)})$ is smooth for ϵ is small. Then

$$\frac{d}{d\epsilon}S(\epsilon)|_{\epsilon=0} = \int_{a}^{b} \left(\sum_{k} \eta^{k} \frac{\partial \mathcal{L}}{\partial \phi^{k}} + \sum_{k,\mu} \dot{\eta}^{k} \frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}} \right) dt$$
$$= \int_{a}^{b} \left(\sum_{k} \eta^{k} \left(\frac{\partial \mathcal{L}}{\partial \phi^{k}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^{k}} \right) \right) \right) dx.$$

Let

$$E_k =: rac{\partial \mathcal{L}}{\partial \phi^k} - rac{d}{dt} \left(rac{\partial \mathcal{L}}{\partial \dot{\phi}^k}
ight)$$

for k = 1, ..., m. These are called Euler-Lagrange expression (E.-L. expression).

Remark

As far as S'(0) is concerned, instead of consider $\phi(t) + \epsilon \eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

• $\phi(0,t) = \phi(t)$, the original function;

Remark

As far as S'(0) is concerned, instead of consider $\phi(t) + \epsilon \eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

- $\phi(0,t) = \phi(t)$, the original function;
- $\phi(s, a) = \phi(a), \phi(s, b) = \phi(b)$ for all s; i.e., the values are fixed at end points.

Remark

As far as S'(0) is concerned, instead of consider $\phi(t) + \epsilon \eta(t)$, it is equivalent to consider smooth variation $\phi(s,t)$, $|s| < \delta$, satisfying the following

- $\phi(0,t) = \phi(t)$, the original function;
- $\phi(s, a) = \phi(a), \phi(s, b) = \phi(b)$ for all s; i.e., the values are fixed at end points.
- Then $\phi(s,t) = \phi(t) + s\eta(t) + O(s^2)$ with $\eta(a) = \eta(b) = 0$, where $\eta(t) = \frac{\partial}{\partial s}\phi(s,t)|_{s=0}$.

Euler-Lagrangian equations, continued

Lemma

Let $f = (f_1, ..., f_m)$ be a vector valued continuous functions on [a, b] such that

$$\int_{a}^{b} \sum_{k} f_{k} \eta_{k} dt = 0$$

for any smooth functions η_k with compact supports in (a,b), i.e. $\eta_k=0$ near a,b. Then $f_k=0$ for all k.

Euler-Lagrangian equations, continued

 ϕ is said to be an extremal of the action S mentioned above, if for any variation as above, we have S'(0) = 0.

Theorem

A C^2 function $\phi = (\phi^1, \dots, \phi^m)$ is an extremal of S if and only if it satisfies the E-L equations for \mathcal{L} above: $E_k = 0$, i.e.

$$\frac{\partial \mathcal{L}}{\partial \phi^k} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}^k} \right) = 0$$

for k = 1, ..., m.

Example

Example: As before, consider m particles in three space with coordinates (x^j, y^j, z^j) with mass \mathfrak{m}_i . Let

$$\mathcal{L} = \frac{1}{2} \sum_{j} \mathfrak{m}_{j} \left[(\dot{x}^{j})^{2} + (\dot{y}^{j})^{2} + (\dot{z}^{j})^{2} \right] - V(t, x, y, z)$$

where V is the potential energy. Here ϕ^k are those x^j, y^j, z^j which depend only on t. $\dot{\phi}^k$ are those \dot{x}^j , etc.

E.-L. expressions are given by

$$E_{1j} = -\frac{\partial V}{\partial x^j} - \mathfrak{m}_j \frac{d^2 x^j}{dt^2}; E_{2j} = -\frac{\partial V}{\partial y^j} - \mathfrak{m}_j \frac{d^2 y^j}{dt^2}; E_{3j} = -\frac{\partial V}{\partial z^j} - \mathfrak{m}_j \frac{d^2 z^j}{dt^2}.$$

Application to geodesic: energy of a curve

Let M be a regular surface and α be a smooth curve defined on [a,b]. Then *energy* of α is defined to by

$$E(\alpha) = \frac{1}{2} \int_{a}^{b} \langle \alpha', \alpha' \rangle dt.$$
 (1)

 $\langle \alpha', \alpha' \rangle$ is called the energy density.

Remark: With the above notation, $(\ell(\alpha))^2 \leq (b-a)E(\alpha)$, and equality holds if and only if α is parametrized proportional to arc length.

Application to geodesic: energy of a curve, cont.

Theorem

Suppose α is a regular curve defined on [a, b]. α is an extremal of E if and only if α is a geodesic.

Proof: Let $\alpha(s,t)$ be a variation of α with end points fixed. Let E(s) be the energy of $\alpha_s(t) = \alpha(s,t)$. Then at s=0

$$E'(s) = \int_{a}^{b} \langle \frac{\partial^{2} \alpha}{\partial s \partial t}, \frac{\partial \alpha}{\partial t} \rangle = -\int_{a}^{b} \langle \mathbf{w}, \alpha'' \rangle dt$$

where $\mathbf{w} = \frac{\partial \alpha}{\partial s}|_{s=0}$. Hence α is an extremal if and only if $(\alpha'')^T = 0$. That is, a geodesic.

E-L equations are equivalent to geodesic equations

To find the E-L equations for the energy functional in local parametrization: $\mathbf{X}(u^1,u^2)$ with first fundamental form g_{ij} . Then Lagrangian of the energy functional is:

$$\mathcal{L}=\frac{1}{2}g_{ij}\dot{u^i}\dot{u^j}.$$

Then (denote $\frac{\partial f}{\partial u^k}$ by $f_{,k}$ etc):

$$\begin{cases} \frac{\partial}{\partial u^{k}} \mathcal{L} = \frac{1}{2} g_{ij,k} \dot{u^{i}} \dot{u^{j}} \\ \frac{\partial}{\partial u^{k}} \mathcal{L} = g_{ik} \dot{u^{i}} \\ \frac{d}{dt} \left(\frac{\partial}{\partial u^{k}} \mathcal{L} \right) = g_{ik} \dot{u^{i}} + g_{ik,l} \dot{u^{l}} \dot{u^{i}} \end{cases}$$

Hence E-L equations are:

$$\frac{1}{2}g_{ij,k}\dot{u^{i}}\dot{u^{j}} - \left(g_{ik}\ddot{u^{i}} + g_{ik,l}\dot{u^{l}}\dot{u^{i}}\right) = 0.$$

for k = 1, 2.

E-L equations are equivalent to geodesic equations, cont.

$$g_{ik}\ddot{u^i} + g_{\rho k,q}\dot{u^i}\dot{q}\dot{u^p} - \frac{1}{2}g_{\rho q,k}\dot{u^p}\dot{u^q} = 0.$$

Hence

$$\ddot{u}^{i} + \frac{1}{2}g^{ik}\left(2g_{pk,q}\dot{u^{q}}\dot{u^{p}} - g_{pq,k}\dot{u^{p}}\dot{u^{q}}\right) = 0.$$

Or

$$\ddot{u^{i}} + \frac{1}{2}g^{ik}\left(g_{pk,q}\dot{u^{q}}\dot{u^{p}} + g_{qk,p}\dot{u^{p}}\dot{u^{q}} - g_{pq,k}\dot{u^{p}}\dot{u^{q}}\right) = 0.$$

Finally, we have

$$\ddot{u^i} + \Gamma^i_{pq} \dot{u^p} \dot{u^q} = 0.$$

Example

Consider the surface of revolution $u^1 \leftrightarrow u$, $u^2 \leftrightarrow v$:

$$\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

f > 0. We want to find the equations of geodesics.

<u>Method 1</u>: $g_{11} = f^2$, $g_{12} = 0$, $g_{22} = (f')^2 + (g')^2$. The Christoffel symbols are given by

$$\Gamma_{11}^{1} = 0, \Gamma_{11}^{2} = -\frac{ff'}{(f')^{2} + (g')^{2}}, \Gamma_{12}^{1} = \frac{ff'}{f^{2}};$$

$$\Gamma_{12}^{2} = 0, \Gamma_{22}^{1} = 0, \Gamma_{22}^{2} = \frac{f'f'' + g'g''}{(f')^{2} + (g')^{2}}.$$

Hence geodesic equations are

$$\ddot{u} + \frac{2ff'}{f^2}\dot{u}\dot{v} = 0$$

and

$$\ddot{v} - \frac{ff'}{(f')^2 + (g')^2} \dot{u}^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} \dot{v}^2 = 0.$$

Example, cont.

<u>Method 2</u>: On the other hand, the $\frac{1}{2}$ of the energy density of a curve is given by

$$\mathcal{L} = \frac{1}{2} (f^2(\dot{u})^2 + ((f')^2 + ((g')^2)(\dot{v})^2).$$

Then

$$\begin{split} \frac{\partial}{\partial u}\mathcal{L} &= 0, \ \frac{\partial}{\partial v}\mathcal{L} = ff'\dot{u}^2 + (f'f'' + g'g'')\dot{v}^2; \\ \frac{\partial}{\partial \dot{u}}\mathcal{L} &= f^2\dot{u}, \ \frac{\partial}{\partial \dot{v}}\mathcal{L} = ((f')^2 + ((g')^2)\dot{v}. \end{split}$$

The E-L equations are:

$$\frac{d}{dt}(f^2\dot{u})=0,$$

and

$$ff'\dot{u}^2 + (f'f'' + g'g'')\dot{v}^2 - \frac{d}{dt}(((f')^2 + ((g')^2)\dot{v})) = 0$$

$$\frac{d}{dt}(f^2\dot{u})=0,$$

and

$$ff'\dot{u}^2 + (f'f'' + g'g'')\dot{v}^2 - \frac{d}{dt}\left(((f')^2 + ((g')^2)\dot{v}\right) = 0$$

Compare with previous computations:

$$\ddot{u} + \frac{2ff'}{f^2}\dot{u}\dot{v} = 0$$

and

$$\ddot{v} - \frac{ff'}{(f')^2 + (g')^2} \dot{u}^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} \dot{v}^2 = 0.$$

Example

Consider the polar coordinates of the plane

 $\mathbf{X}(r,\theta)=(r\cos\theta,r\sin\theta,0)$. Let $r\leftrightarrow u^1,\theta\leftrightarrow u^2$. Then $g_{11}=1,g_{12}=0,g_{22}=r^2$. Then $\frac{1}{2}$ of the energy density is given by

$$\mathcal{L} = \frac{1}{2}((\dot{r})^2 + r^2(\dot{\theta})^2).$$

Then

$$\frac{\partial}{\partial r} \mathcal{L} = r(\dot{\theta})^2, \ \frac{\partial}{\partial \dot{r}} \mathcal{L} = \dot{r};$$
$$\frac{\partial}{\partial \theta} \mathcal{L} = 0, \ \frac{\partial}{\partial \dot{\theta}} \mathcal{L} = r^2 \dot{\theta}.$$

So E-L equations are

$$\begin{cases} r(\dot{\theta})^2 - \frac{d}{dt}\dot{r} = 0 \\ -\frac{d}{dt}\left(r^2\dot{\theta}\right) = 0. \end{cases}$$

$$\begin{cases} \ddot{r} - r(\dot{\theta})^2 = 0 \\ \ddot{\theta} + \frac{2}{r}\dot{r}\dot{\theta} = 0. \end{cases}$$

These are geodesic equations. Hence one can obtain Γ_{ij}^k by comparing with the geodesic equations.