
Geodesic curvature

Let M be an orientable regular surface with unit normal vector
field N. Let α be regular curve on M parametrized by arc length.
Let α′ = T and let n be the unit vector perpendicular to T so that
T,n,N are positively oriented. Then

α′′ = knN + kgn.

kg is called the geodesic curvature of α in M (with respect to the
orientation N).



Some basic facts

If we consider the orientation Ñ = −N, then {T, ñ, Ñ} is
positively oriented. Hence the geodesic curvature k̃g with

respect to N is k̃g = −k̃g .

If the orientation of the curved is changed, namely, if
β(s) = α(−s), say. Then the geodesic curvature of β is equal
to −kg (at the same point).

kg = 〈α′′,n〉 = 〈α′′,N× α′〉 = 〈α′ × α′′,N〉.
k2
g + k2

n = k2, where k = |α′′| is the curvature of α ( if it is
not zero).
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Geodesics are ‘straight lines’

Definition

A regular curve on a regular surface M is called a geodesic if it is
parametrized proportional to arc length and has zero geodesic
curvature.

So being geodesic means:

kg = 0 and

|α′|=constant.

Note that being geodesic (i.e. kg = 0, with |α′|=constant) does
not depend on orientation.



Examples

In the following all curves are assumed to be parametrized by arc
length.

The geodesic curvature of a plane curve on the xy -plane is the
signed curvature of the curve.

Consider the unit sphere S2(1) with center at the origin.
Suppose α is a great circle. Then α′′ is parallel to normal
vector on the unit sphere. Hence it is a geodesic. If α is the
circle with {z = a} ∩ S2(1) with 0 < a < 1 so that
α(s) =

(
b cos s

b , a sin s
b , a
)

with b =
√

1− a2. Then
k2
g = b−2 − 1. The sign of kg depends on the choice of the

orientations of the sphere and the curve.
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Examples, cont.

Consider the surface of revolution:

X(u, v) = (f (v) cos u, f (v) sin u, g(v))

with f 2
v + g2

v = 1 and f > 0. A meridian is a curve of the form
α(t) = X(c, t) for some constant c , and a parallel is a curve of the
form α(t) = X(t, c) for some constant c . Note that

Xu = (−(f (v) sin u, f (v) cos u, 0),Xv = (fv cos u, fv sin u, gv ).

For any meridian parametrized by arc length, we have

α′′ = (f ′′ cos c , f ′′ sin c , g ′′).

Then α′′ ⊥ Xu and α′′ ⊥ Xv . Hence its geodesic curvature is zero
and it is a geodesic.



Examples, cont.

If α is a parallel, then

α′′ = (−f (c) cos u,−f (c) sin u, 0).

Then 〈α′′,Xu〉 = 0 and

〈α′′,Xv 〉 = −ffv .

which is zero if and only if fv = 0.

Corollary

The meridians of a surface of revolution are geodesics. A parallel is
a geodesic if and only if its tangent vector is parallel to the z-axis.



Examples, cont.

Proposition

Let M1,M2 be two oriented regular surfaces. Suppose they are
tangent at a regular curve α. Then the geodesic curvatures as a
curve in M1,M2 are the same. Here we use the same orientation
along α. In particular, if α is a geodesic on M1, then it is also a
geodesic on M2.



Geodesic curvature in local coordinates

Let M be a regular surface and X(u1, u2) be a coordinate
parametrization. Let N = X1 × X2/|X1 × X2|.

Lemma

Let α(t) be a regular curve on M such that α(t) = X(u1(t), u2(t))
(t may not be proportional to arc length). Then

α̈ =
2∑

k=1

Xk

ük +
2∑

i ,j=1

Γk
ij u̇

i u̇j

+ II(α′, α′)N.

Here ḟ = df
dt etc.



Proof

Proof: We have Xij = Γk
ijXk + hijN, where hij are the coefficients

of the second fundamental from. Since α̇ =
∑

i Xi u̇
i , we have

(using summation convention)

α̈ =Xij u̇
j u̇i + Xi ü

i

=u̇i u̇j
(

Γk
ijXk + hijN

)
+ Xi ü

i

=
2∑

k=1

Xk

ük +
2∑

i ,j=1

Γk
ij u̇

i u̇j

+ II(α̇, α̇)N.



Geodesic curvature in local coordinates, cont.

Let us compute kg , we need the following:
Lemma: Let u1,u2, v1, v2 be vectors in R3, then

〈u1 × u2, v1 × v2〉 = 〈u1, v1〉〈u2, v2〉 − 〈u1, v2〉〈u2, v1〉.

Proof: Let e1, e2 or e3 be the standard base vectors in R3.
u1 = aiei , u2 = biei , v1 = ciei , v2 = diei .

Then

〈u1 × u2, v1 × v2〉 = aibjckdl〈ei × ej , ek × el〉.

〈u1, v1〉〈u2, v2〉 − 〈u1, v2〉〈u2, v1〉
=aibjckdl (〈ei , ek〉〈ej , el〉 − 〈ei , el〉〈ej , ek〉)

Hence only need to check the relation for base vectors.
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Geodesic curvature in local coordinates, cont.

Now, suppose α is parametrized by arc length, then

kg =〈α̇× α̈,N〉

=〈α̇× α̈, X1 × X2

|X1 × X2|
〉

=
1√

det(gij)
(〈α̇,X1〉〈α̈,X2〉 − 〈α̇,X2〉〈α̈,X1〉) .

To compute:
〈α̇,X1〉 = u̇kgk1

〈α̈,X2〉 =
(

ük +
∑2

i ,j=1 Γk
ij u̇

i u̇j
)

gk2

〈α̇,X2〉 = u̇kgk2

〈α̈,X1〉 =
(

ük +
∑2

i ,j=1 Γk
ij u̇

i u̇j
)

gk1.



Geodesic curvature in local coordinates, cont.

Hence

kg =
1√

det(gij)

[(
u̇kgk1

)ül +
2∑

i ,j=1

Γl
ij u̇

i u̇j

 gl2

−
(

u̇kgk2

)ül +
2∑

i ,j=1

Γl
ij u̇

i u̇j

 gl1

]



Geodesic curvature in local coordinates, cont.

On the other hand,

u̇k ülgk1gl2 − u̇k ülgl1gk2 = (u̇1ü2 − u̇2ü1)det(gij).

and

u̇kgk1Γl
ij u̇

i u̇jgl2 − u̇kgk2Γl
ij u̇

i u̇jgl1

=
∑
k 6=l

(
u̇kΓl

ij u̇
i u̇jgk1gl2 − u̇kΓl

ij u̇
i u̇jgk2gl1

)
=u̇1Γ2

ij u̇
i u̇jg11g22 − u̇1Γ2

ij u̇
i u̇jg12g21

+ u̇2Γ1
ij u̇

i u̇jg21g12 − u̇2Γ1
ij u̇

i u̇jg22g11

=(Γ2
ij u̇

1 − Γ1
ij u̇

2)u̇i u̇jdet(gkl)



Geodesic curvature is intrinsic

Proposition: Geodesic curvature is intrinsic. In fact, if α is
parametrized by arc length, then

kg =
√
det(gij)

[
(u̇1ü2 − u̇2ü1) + (Γ2

ij u̇
1 − Γ1

ij u̇
2)u̇i u̇j

]
=
√

det(gij)

[
u̇1ü2 − u̇2ü1 + Γ2

11(u̇1)3

− Γ1
22(u̇2)3 +

(
2Γ2

12 − Γ1
11

)
(u̇1)2u̇2 −

(
2Γ1

12 − Γ2
22

)
(u̇2)2u̇1

]



Corollary: Isometry will carry geodesics to geodesics.
Lemma: Suppose α(t) is a regular curve on M which satisfies

ük +
2∑

i ,j=1

Γk
ij u̇

i u̇j = 0

for k = 1, 2. in any coordinate chart. Then |α′| is constant.
Proof If α satisfies the equations, then α′′ is proposition to N.
Hence α′′ ⊥ α′ and so d

dt |α
′|2 = 0.



Geodesics describe motion of particles with zero
acceleration

Proposition: Let α be a regular curve on M, it is a geodesic if and
only if in any local coordinates,

ük +
2∑

i ,j=1

Γk
ij u̇

i u̇j = 0

for k = 1, 2.
That is: the acceleration on the surface is zero: (α̈)T = 0, where
uT is the tangential part of u. Or the tangent vectors are
‘constant’ or parallel to be precise.



Example

In polar coordinates of the xy -plane X(r , θ) = (r cos θ, r sin θ, 0) we
have Γ1

22 = −r , Γ2
12 = r−1 and all other Γ’s are zeros. So geodesic

equations are: {
r̈ − r(θ̇)2 = 0;

θ̈ + 2r−1ṙ θ̇ = 0.



Example

Consider the surface of revolution given by

X(u, v) = (α(v) cos u, α(v) sin u, β(v))

with α > 0. Consider u1 ↔ u, u2 ↔ v . So{
Γ1
11 = 0, Γ1

12 = α′

α , Γ
1
22 = 0;

Γ2
11 = − αα′

(α′)2+(β′)2
, Γ2

12 = 0, Γ2
22 = α′α′′+β′β′′

(α′)2+(β′)2
.

Hence geodesic equations are:{
ü + 2α′

α u̇v̇ = 0;

v̈ − αα′

(α′)2+(β′)2
(u̇)2 + α′α′′+β′β′′

(α′)2+(β′)2
(v̇)2 = 0.



Existence of geodesic

We have the following existence of geodesic.

Proposition

At any point p ∈ M, and any vector v ∈ Tp(M), there is a
geodesic α(t) defined on (−ε, ε) for some ε > 0 such that
α(0) = p and α′(0) = v.

This follows from the following theorem on ODE.

Theorem

Let U be an open set in Rn and let Ia = (−a, a) ⊂ R, with a > 0.
Suppose F : U × Ia → Rn is a smooth map. Then for any x0 ∈ U,
there is 0 < δ < a, such that the following IVP has a solution:{

x′(t) = F(x(t), t), −δ < t < δ;
x(0) = x0.

Moreover, the solutions of the IVP is unique. Namely, if x1 and x2
are two solutions of the above IVP on (−b, b) for some 0 < b < a,
then x1 = x2.


