
Simple closed curves

Definition

Let α : [a, b]→ M be a curve. α is said to be piecewise smooth if
there exist a = t0 < t1 < · · · < tk = b such that

(i) α is continuous;

(ii) α is regular and is smooth on each [ti , ti+1].

α is said to be simple if α(t) 6= α(t ′) for t 6= t ′.

α is said to be closed if α(a) = α(b).

α is said to be simple closed if α is closed and is simple on
(a, b].

α is said to be smooth and simple closed if α is simple closed
and α(a) = α(b) and α′(b) = α′(a).

α is said to be a closed geodesic if α is a geodesic and is
smooth simple closed, so that α(a) = α(b) and α′(b) = α′(a).
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Definition

Let M be an oriented regular surface and R ⊂ M is a bounded
domain in M which is bounded by some piecewise smooth simple
closed curve α1, . . . , αn. Then αi is said to be positively oriented if
the unit normal n ⊥ α′ is such that

(i) α′,n are positively oriented; and

(ii) n is pointing to the interior of R.



∫∫
RKdA for R inside an isothermal coordinate chart

Consider the following:

Let X : U → M be an isothermal local parametrization of an
oriented surface M (i.e. E = G = e2f , F = 0).

Let α = α(s) = X(u(s), v(s)) (0 ≤ s ≤ l), be a simple closed
piecewise smooth curve parametrized by arc length in M so
that β(s) = (u(s), v(s)) is a piecewise smooth curved in U
which bounds a region D in U. Let R = X(D). Assume α is
positively oriented.

Let L be the length of β in U and let τ be the arc length of β.
Then β(s) = β(s(τ)), 0 ≤ τ ≤ L.
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We want to compute
∫∫
R KdA where K is the Gaussian curvature

of M. Recall that in the above settings, if f is a function defined
on M then ∫∫

R
fdA =

∫∫
U

f
√

EG − F 2dudv .

Here f = f (u, v) = f (X(u, v)).

Lemma ∫∫
R

KdA = −
∫ L

0
〈∇0f , ν0〉dτ

where ∇0f = ( ∂f∂u ,
∂f
∂v ). Here τ is the arc length of β as a curve in

U ⊂ R2 and ν0 is the unit outward normal of D.



In order to prove the lemma, we need the following Green’s
theorem (divergence theorem):

Theorem

Let Ω be a bounded domain if R2 and let γ = γ(τ) parametrized
by arc length, 0 ≤ s ≤ l be the boundary curve of Ω, positively
oriented. Assume that γ is piecewise smooth and connected. Let ν
be the unit outward normal of Ω. Suppose P and Q are two
smooth functions defined on Ω, and let w = (P,Q). Then∫∫

Ω

(
∂P

∂u
+
∂Q

∂v

)
dudv =

∫ l

0
〈w, ν〉dτ.



Note that div w = ∂P
∂u + ∂Q

∂v . Hence the theorem is equivalent
to say: ∫∫

Ω
div w dudv =

∫ l

0
〈w, ν〉dτ.

The theorem is still true if the boundary consists of finitely
many piecewise smooth closed curves. We have to assume
that all are positively oriented.

The theorem is still true in higher dimension.



Proof of the Divergence Theorem for domains in R2

Step 1: Assume the domain D is bounded by the line segment
L : {a ≤ x ≤ b, y = 0} and the graph K of a function y = φ(x)
over L with φ(x) > 0 for x ∈ (a, b) and y(a) = y(b) = 0. If
X = (0, g(x , y)) is a smooth vector field, then∫

D
div X dxdy =

∫
D

∂g

∂y
dxdy

=

∫ b

a

(∫ φ(x)

0

∂g

∂y
dy

)
dx

=

∫ b

a
(g(x , φ(x))− g(x , 0)) dx .

The outward unit normal ν of D at the boundary L is (0,−1).
Hence ∫

L
〈X , ν〉ds = −

∫ b

a
g(x , 0)dx



The unit outward normal of D at the boundary K is
(−φ′(x), 1)/

√
1 + (φ′)2(x). and∫

K
〈X , ν〉ds =

∫ b

a
〈X , ν〉

√
1 + (φ′)2(x)dx =

∫ b

a
g(x , φ(x))dx .



Step 2: The theorem is true for a domain bounded by a triangle.
Step 3: The theorem is true for a domain bounded by a polygon.
Step 4: The theorem is true for a domain bounded by a piecewise
smooth curve.



Proof of the lemma.

Recall that

K = −e−2f

(
∂2

∂u2
+

∂2

∂v 2

)
f .

On the other hand,
EG − F 2 = e4f .

Hence ∫∫
R

KdA =−
∫∫

U
e−2f

(
∂2

∂u2
+

∂2

∂v 2

)
f · e2f dudv

=−
∫∫

U

(
∂2

∂u2
+

∂2

∂v 2

)
f dudv

=−
∫ L

0
〈w, ν0〉dτ.

Here w = ( ∂f∂u ,
∂f
∂v ) = ∇0f .



kg in isothermal coordinates

We want to see what is the boundary integral.
Consider:

Let X(u, v) : U → M be a local isothermal parametrization of
a surface M. That is: the 1st fundamental form satisfies
E = G > 0, F = 0. Let e2f = E = G .

Let e1 = Xu/|Xu| = e−f Xu, and e2 = e−f Xv .

We also assume that e1, e2 are positively oriented. That is
the orientation is given by the normal of the surface
N = Xu × Xv/|Xu × Xv |. We want to compute the geodesic
curvature of a curve w.r.t. this orientation.
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Let α : [0, l ] be a smooth regular curve on X(U) with arc length
parametrization. Let θ0 be an angle such that
< α′(0), e1 >= cos θ0. Once we choose θ0, then we can define a
function θ(s) such that it is smooth and θ(0) = θ0 with
〈α′(s), e1(s)〉 = cos θ(s) and 〈α′(s), e2(s)〉 = sin θ(s). Hence

α′(s) = e1 cos θ + e2 sin θ.

Let
n = −e1 sin θ + e2 cos θ.

Then α′, n are positively oriented.



Now we can compute kg :

kg =〈α′′,n〉
=〈e′1 cos θ + e′2 sin θ + (−e1 sin θ + e2 cos θ)θ′,n〉
=〈e′1, e2〉 cos2 θ − 〈e′2, e1〉 sin2 θ + θ′

=〈e′1, e2〉+ θ′

=e−2f 〈 d

ds
(Xu),Xv 〉+ θ′

where we have used the following facts, 〈e′1, e1〉 = 〈e′2, e2〉 = 0,
〈e′1, e2〉 = −〈e′2, e1〉.



Now

〈 d

ds
(Xu),Xv 〉 =〈u′Xuu + v ′Xuv ,Xv 〉

=e2f (−fvu′ + fuv ′).



Now as before, let α(s) = X(β(s)) where β(s) = (u(s), v(s)) with
arc length τ . We have

kg =
dθ

ds
+ (−fv

du

ds
+ fu

dv

ds
)

=
dθ

ds
+ (−fv

du

dτ
+ fu

dv

dτ
)

dτ

ds

=
dθ

ds
+ 〈∇0f , ν0〉0

dτ

ds

where ν0 = ( dv
dτ ,−

du
dτ ). The inner product is taken w.r.t. the

Euclidean inner product in R2. Note that β′,−ν0 are positively
oriented.



To compute
∫∫

KdA+
∫ l

0 kgds

Now go back to what we consider.

Let X : U → M be an isothermal local parametrization of an
oriented surface M (i.e. E = G = e2f , F = 0).

Let α = α(s) = X(u(s), v(s)) (0 ≤ s ≤ l), be a simple closed
piecewise smooth curve parametrized by arc length in M so
that β(s) = (u(s), v(s)) is a piecewise smooth curved in U
which bounds a region D in U. Let R = X(D).

Let L be the length of β in U and let τ be the arc length of β.
Then β(s) = β(s(τ)), 0 ≤ τ ≤ L.



Assume there exist 0 = s0 < s1 < . . . , sk+1 = l so that α is
continuous and smooth in each [si , si+1]. Then we have smooth
functions θ on each [si , si+1] as above.
By the previous lemma, we have∫∫

R
KdA =−

∫ L

0
〈∇0f , ν0〉0dτ

=−
∫ l

0
〈∇0f , ν0〉0

dτ

ds
ds

=−
∫ l

0
kgds +

∫ l

0

dθ

ds
ds

=−
∫ l

0
kgds +

k∑
i=0

(θ(si+1)− θ(si )).

Or ∫∫
R

KdA +

∫ l

0
kgds =

k∑
i=0

(θ(si+1)− θ(si )).

What is the RHS?



Jordan curve theorem

Theorem (Jordan curve theorem)

Let α be a continuous simple closed curve in R2 (or in S2), then α
will separate R2 (or S2) into two components (i.e. open connected
sets).



Exterior angles and interior angles

Now let R ⊂ M is a bounded domain in M which is bounded by
some piecewise smooth positively oriented simple closed curve
α1, . . . , αn.
Denote α be one of the αk parametrized by arc length with length
`. Let 0 = t0 < t1 < · · · < tm+1 = ` such that α is smooth on
[ti , ti+1] and α is smooth near α(0) = α(`). Each α(ti )
(1 ≤ i ≤ m) is called a vertex.



The exterior angle θi at α(ti ) is defined as follows. First let

α′(ti−) = lim
t<ti ,t→ti

α′(t);α′(ti+) = lim
t>ti ,t→ti

α′(t)

α′(ti−) = α′(ti+), then θi = 0.

α′(ti−) 6= ±α′(ti+). Then they are linearly independent. We
define θi to be the oriented angle from α(ti−) to α(ti+)
between −π, π. θi is positive (negative), if α(ti−), α(ti+) are
positively (negatively) oriented.

α′(ti−) = −α′(ti+), the θi = π or −π. The sign is
determined by ’approximation’.

The interior angle ιi at α(ti ) is defined as ιi = π − θi .



Hopf’s Umlaufsatz

Theorem (Hopf’s Umlaufsatz, Theorem of Turning Tangents)

Let α : [0, l ]→ R2 be a piecewise regular, simple closed curve with
α(0) = α(l). Let α(t1), . . . , α(tk),
0 = t0 < t1 < · · · < tk < tk+1 = l be the vertices of α with
exterior angle θi . Let ϕi be smooth choice of angles defined in
[ti , ti+1] such that the oriented angle from the positive axis to α′(t)
is ϕi (t) (i.e. α′ = (cosϕi (t), sinϕi (t))) for t ∈ [ti , ti+1]. Then

k∑
i=1

(ϕi (ti+1)− ϕi (ti )) +
k∑

i=0

θi = ±2π.

It is +1 if α is positively oriented and −1 if it is negatively
oriented, with respect to the usual orientation of R2.

Remark

Umlauf means ”rotation” in German; Umlaufzahl = ”rotation
number,” Satz = ”theorem.”



The Gauss-Bonnet Theorem: local version

Theorem

Let X : U → M be an isothermal local parametrization of an
oriented surface M (i.e. E = G = e2f , F = 0). Assume that X is
orientation preserving. Let α = α(s) = X(u(s), v(s)), 0 ≤ s ≤ l ,
be a simple closed curve parametrized by arc length so that
(u(s), v(s)) bounds a region D in U. Let R = X(D). Assume α is
piecewise smooth and positively oriented. Let α(s0), . . . , α(sk) be
the vertices of α with exterior angles ϕ0, . . . , ϕk , where
0 = s0 < s1 < · · · < sk < sk+1 = l . Then∫ l

0
kg (s)ds +

∫∫
R

KdA +
k∑

i=0

ϕi = 2π.



Proof.

Since the parametrization preserves angles and orientation, by
Hopf’s theorem and the fact that∫∫

R
KdA +

∫ l

0
kgds =

k∑
i=0

(θ(si+1)− θ(si )).

the result follows.



Corollary

Suppose k = 3, i.e. we have a triangle then∫ l

0
kg (s)ds +

∫∫
R

KdA =
3∑

i=1

ιi − π,

where ιi = π − θi are the interior angles. Hence if each side is a
geodesic, then K > 0 implies the sum of the interior angles is
larger than π, and K < 0, implies the sum of the interior angles is
less than π.


