Definition

Let F : My — My be a diffeomorphism. F is said to be an isometry
if for any p € My and q = F(p), the linear map dF : My — M, is
an isometry as inner product spaces. If there is an isometry from
My onto M, then My is said to be isometric to M.




@ Let M; be the xy-plane parametrized by X(u, v) = (u, v,0).
Let M, be the circular cylinder parametrized by
Y (u,v) = (cos u,sin u, v).



@ Let M; be the xy-plane parametrized by X(u, v) = (u, v,0).
Let M, be the circular cylinder parametrized by
Y (u,v) = (cos u,sin u, v).

e Consider the map F : My — M, so that X(u, v) is mapped
into Y(u, v). This is not a diffeomorpism, but is a local
diffeomorphism. Note that

dF(Xy) = Yo, dF(X,) =Y,

Moreover, (X, X,) =1=(Y,, Yu),
Xy, Xp) =1=(Y,,Y,), Xy, Xy) =0=(Y,,Y,). So this is
a local isometry.



Let M; be the xy-plane with the negative axis deleted,
parametrized by X(p,0) = (pcos@, psinf,0). Let M, be the cone
{z = k\/x? 4+ y?}, so that cota = k, 0 < 2a < 7 is the angle at
the vertex. Parametrize the cone by

Y(p,0) = (psin acos(%), psin asin(%), pcosf)

Then it is a local isometry.



Let My be the catenoid parametrized by
X(u, v) = (acosh v cos u, acosh vsin u, av)
Let M, be the helicoid given by
Y(s,t) = (tcoss,tsins,as).

Define a map F from M; to M5 so that
(u,v) = (s, t) = (u, asinh v). The Jacobian matrix is given by

1 0
0 acoshv

Then dF(X,) = Ys,dF(X,) = acosh vY;. So
(Xy, Xy) = a% cosh? v = (dF (X,), dF (X,))

etc



Theorema Egregium of Gauss

(Theorema Egregium of Gauss) The Guassian curvature K is
invariant under isometries. That is to say, the Gaussian curvature
depends only on the first fundamental form.




Recall the following.

o Let A= (ajj), B = (bjj) be two 3 x 3 matrices. Let a; be the
row vectors of A and b; be the column vectors of B. Then

AB = ((a,-, b,>) .



Proof:
o Let X(u', u?) be a local parametrization of a regular surface,
and let gj; be the coefficients of the first fundamental form
and h;j; be the second fundamental form.
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(Xij, X1, X2)
hy =(N, X)) = 021 22)
det(gj;)
Oj
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Proof:

o Let X(u', u?) be a local parametrization of a regular surface,
and let gj; be the coefficients of the first fundamental form
and h;j; be the second fundamental form.

@ In the following, if a, b, c are three vectors, (a, b, c) is the
ordered triple product of the three vectors. This is just equal
to det(a, b, c) as row vectors or as column vectors.

]
hy =(N, ;) = X220 X2)
ct(gj)
= 790‘
'\/det(g,'j)'
o Now
K = det(hij) = det(g;j)_2 (@11@22 - @%2)

~ det(gy)



First proof, cont.

(X11, X22)  (X11,X1)  (X11,X2)
01102 =det | (X1, X22) (X1, X1) (X1, Xp)
(X2, X22) (X2, X1) (X2, X2)

(X11, X22) (gu)1 (g12)1 — 2(g11)2
=det | (g12)2 — i(g2)1  &u g12
%(g22)2 812 822

(X12,X12)  (X12,X1) (X12,X2)
@%2 =det <X1, X12> <X1, X1> <X1, X2>
(X2, X12) (X2, X1) (X2,X2)

(X12,X12) 3(g11)2 3(g2)1
=det 1(g11)2 gi1 812
5(822)1 812 822



First proof, cont.

Hence

01102 — 0%,

(X11, X22) — (X12,X12)  3(g11)1 (g12)1 — 2(811)2
(812)2 — 5(g22)1

=det

— det

NN =

3(g22)2
0 3(g11)2
(g11)2  &u
(g22)1 812

811 812
812 822
3(g22)1
812
822



First proof, cont.

Now

(X11, X22)—(X12, X12)
=(X1, X22)1 — (X1, X221) — (X1, X12)2 + (X1, X122)
1 1
= ((g12)2 — 2(g22)1> — 58112

1

1
=g12,12 — 5(3’11,22 + g22,11)-



First proof, cont.

Hence
(det(gy))*K
812,12 — %(gn »+gn11) 3(gu)1 (g12)1 — 3(g11)2
=det (g12)2 — (g22) 811 812
%(gzz)z 812 822
. 0 T(g11)2 (g1
— det %(gn)z g11 g12
5(g2)1 g2 &2

Hence K depends only on gj; and their derivatives up to second

order.



Christoffel symbols

Let X(u?, u?) is a coordinate parametrization. Let X; = X,
gj = (Xi,X;), (g%) = (g5)~*. Then

Xj =Xy + hyN. (1)

(Einstein summation convention: repeated indices mean
summation.)
FZ- are called the Christoffel symbols for this parametrization.



To compute I

2
1
=5 8" (6 + & — &)
=1

0
where gjj | = 578 etc.

Proof: X;; = Xj;, so Fl’fj = rjkl

(Xij, X) = T8
So
gij — (Xi, X)) = Tgu
So
o=k ko, .
8ilj i78kl + 1 1;8ki-



Hence we have
gij= Thew+ Fng,.

gii= Tk i8kl + |',,ng~
gij | = r,/g/g + T gy Ijigxi-

Hence
gilj + &ji — &ij,) = 2Ffj-gk/.

From this the result follows.



o Let M be the xy-plane parametrized by X(u,v) = (u, v,0).
Then I’f} =0 for all i,j, k.

So I_%z = —r, r%z = r~1, all other I''s are zero.



o Let M be the xy-plane parametrized by X(u,v) = (u, v,0).
Then I’f} =0 for all i,j, k.

o If we use polar coordinates, X(r,0) = (rcos@,rsin6,0). If
ut < r,u? < 6. Then gi1 =1,810 =0,820 = r?. So
gl =1,g2=0,g2=r"2 Then

1 1
My = 58" (gikj + gjni — &) = 5 (&inj + gi — &)

Similarly,

1 1 _
M5 = 58" (gij + gjei — &) = 51" (812 + &2 — £i2) -

So M, = —r, M, =r1, all other I''s are zero.



Examples, cont.

Consider the surface of revolution given by
X(u,v) = (a(v) cos u, a(v) sin u, B(v))

with a > 0. Consider u! <> u, u? <+ v. Then
g1 =0a?, g1 =0,g0 = (/)2 + (8')%. So .
gll — Cf2,g12 — 0,g22 — ((0/)2 4 (5/)2) )

1 1
=g (gij + &ik,i — 8ijk) = 50 % (i) + &g1i — &ij1)-

2
>0 1 1
M, = 504_23’11,1 =0, = Ea_zgzz,l =0,
1 o
= -aq2 = —.
12 204 8112 o



Examples, cont.

Similarly,

1 1
s = §g2k (Gikj + &jk,i — &ij.k) = §g22 (8i2,j + 8j2.i — &ij.2) -

Hence

1 aa’ 1 oo’ + BB
M= —28%812 =~y o (30 = 282822 = a1 ans
2 2g gi1,2 @)+ (32 22 2g 8222 (a/)2 + ()2

1
r2, = §g22g22,1 =0.



Examples, cont.

In general, if g1 = 0, then
13 1
rs = 5 > &M (guj+ gii — i) = Egkk (8ik,j + &jk,i — &ij k)
=1

no summation. So

1 1
r%l = Egllgn,l, r%1 = —§g22g1172;

1 1
r%z = —§g11g22,1, F%Z = §g22g22,2;

1 1
M, = §g11g11,27 M, = §g22g22,1-



Second proof of Theorema Egregium of Gauss

With the above notations, then

2K — g (ru =T = T = r,§.r’k,.) = gI(Tk, g + T ).

Here T[U]k = Tijk = Tjik etc.

Compare with higher dimensional Riemannian curvature:

R;

’Jkr

/ / I s
ikj ry rs ik rksrij




Proof: Let S be the shape operator, then

—N; = S8(X;) = aX;.

Xijm =hijmN + hijNpm + T5 Xy + T Xpem
_ (h,-j,m n rfj.hkm) N+ (fh,-jafn T+ r;;r_ﬁm) X

Since Xjjm = Xjmj, we have
(—h,-jak T+ r;j-rg‘m) X, = (—h,-majk N rfmr5j> X,

Or
h,-jaﬁ — himajl'( =Tk _rk rsrk sk

ij,m im,j ij' ms im' js



Now the matrix of the shape operator is:

(2)) = (hy)(g5) "

/ /
So hji = hjj = ajgj = a;gii. Hence

i k i k _ rk k srk s rk
a;8ljdm — Am8lidj = I_ij,m - rimlj + I_ijrms - I_imrjs'

Let m = k and sum on k
g7 (s = Thej + T = 3T )
=g¥ (afg,ja,'j - aLinajl'()

_ \2 kol
—(E aj) —E a7 dk
i I,k
=2aj1axn — 28%8%
=2K



Compatibility conditions

Given (gj;) which is symmetric and positive definite and (h;;) which
is symmetric, can we find X(u!, u?) so that the first fundamental
form is h;;? If X; exist, then we can find X. The restriction on X;

are
Xijk = Xikj, Njj = Nj.

Hence we have
(= higaly & Tl T35 ) X = (—himaf + Tl + T3, ) X

with a{ = hygY. We have three relations for each X;. Now

—Nj =(afXy);
=(af); Xk + a (FlkX,—i—a hxN)
= (a9 + alr}) X+ a N



So we also need, for k = 1,2

k Ik k
(a,- )J + airj = (aj ),’ + ajlrﬁ

These are called Gauss equations and Mainardi-Codazzi equations
respectively.



