Isometry

Definition

Let $F: M_1 \to M_2$ be a diffeomorphism. F is said to be an isometry if for any $p \in M_1$ and q = F(p), the linear map $dF: M_1 \to M_2$ is an isometry as inner product spaces. If there is an isometry from M_1 onto M_2 , then M_1 is said to be isometric to M_2 .

• Let M_1 be the xy-plane parametrized by $\mathbf{X}(u, v) = (u, v, 0)$. Let M_2 be the circular cylinder parametrized by $\mathbf{Y}(u, v) = (\cos u, \sin u, v)$.

- Let M_1 be the xy-plane parametrized by $\mathbf{X}(u, v) = (u, v, 0)$. Let M_2 be the circular cylinder parametrized by $\mathbf{Y}(u, v) = (\cos u, \sin u, v)$.
- Consider the map $F: M_1 \to M_2$ so that $\mathbf{X}(u,v)$ is mapped into $\mathbf{Y}(u,v)$. This is not a diffeomorpism, but is a local diffeomorphism. Note that

$$dF(\mathbf{X}_u) = \mathbf{Y}_u, dF(\mathbf{X}_v) = \mathbf{Y}_v.$$

Moreover, $\langle \mathbf{X}_u, \mathbf{X}_u \rangle = 1 = \langle \mathbf{Y}_u, \mathbf{Y}_u \rangle$, $\langle \mathbf{X}_v, \mathbf{X}_v \rangle = 1 = \langle \mathbf{Y}_v, \mathbf{Y}_v \rangle$, $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0 = \langle \mathbf{Y}_u, \mathbf{Y}_u \rangle$. So this is a local isometry.

Let M_1 be the xy-plane with the negative axis deleted, parametrized by $\mathbf{X}(\rho,\theta)=(\rho\cos\theta,\rho\sin\theta,0)$. Let M_2 be the cone $\{z=k\sqrt{x^2+y^2}\}$, so that $\cot\alpha=k$, $0<2\alpha<\pi$ is the angle at the vertex. Parametrize the cone by

$$\mathbf{Y}(\rho,\theta) = (\rho \sin \alpha \cos(\frac{\theta}{\sin \alpha}), \rho \sin \alpha \sin(\frac{\theta}{\sin \alpha}), \rho \cos \theta)$$

Then it is a local isometry.

Let M_1 be the catenoid parametrized by

$$\mathbf{X}(u, v) = (a \cosh v \cos u, a \cosh v \sin u, av)$$

Let M_2 be the helicoid given by

$$\mathbf{Y}(s,t) = (t\cos s, t\sin s, as).$$

Define a map F from M_1 to M_2 so that $(u,v) o (s,t) = (u,a \sinh v)$. The Jacobian matrix is given by

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & a\cosh v \end{array}\right)$$

Then $dF(\mathbf{X}_u) = \mathbf{Y}_s$, $dF(\mathbf{X}_v) = a \cosh v \mathbf{Y}_t$. So

$$\langle \mathbf{X}_u, \mathbf{X}_u \rangle = a^2 \cosh^2 v = \langle dF(\mathbf{X}_u), dF(\mathbf{X}_u) \rangle$$

Theorema Egregium of Gauss

Theorem

(Theorema Egregium of Gauss) The Guassian curvature K is invariant under isometries. That is to say, the Gaussian curvature depends only on the first fundamental form.

Recall the following.

• Let $A = (a_{ij})$, $B = (b_{ij})$ be two 3×3 matrices. Let \mathbf{a}_i be the row vectors of A and \mathbf{b}_j be the column vectors of B. Then

$$AB = (\langle \mathbf{a}_i, \mathbf{b}_i \rangle).$$

Proof:

• Let $\mathbf{X}(u^1, u^2)$ be a local parametrization of a regular surface, and let g_{ij} be the coefficients of the first fundamental form and h_{ij} be the second fundamental form.

Proof:

- Let $\mathbf{X}(u^1, u^2)$ be a local parametrization of a regular surface, and let g_{ij} be the coefficients of the first fundamental form and h_{ij} be the second fundamental form.
- In the following, if a, b, c are three vectors, (a,b,c) is the ordered triple product of the three vectors. This is just equal to $\det(a,b,c)$ as row vectors or as column vectors.

Proof:

- Let $\mathbf{X}(u^1, u^2)$ be a local parametrization of a regular surface, and let g_{ij} be the coefficients of the first fundamental form and h_{ij} be the second fundamental form.
- In the following, if a, b, c are three vectors, (a,b,c) is the ordered triple product of the three vectors. This is just equal to $\det(a,b,c)$ as row vectors or as column vectors.

•

$$egin{align} h_{ij} = & \langle \mathbf{N}, \mathbf{X}_{ij}
angle = rac{(\mathbf{X}_{ij}, \mathbf{X}_1, \mathbf{X}_2)}{\sqrt{\det(g_{ij})}} \ = & : rac{\Theta_{ij}}{\sqrt{\det(g_{ij})}}. \end{split}$$

Proof:

- Let $\mathbf{X}(u^1, u^2)$ be a local parametrization of a regular surface, and let g_{ij} be the coefficients of the first fundamental form and h_{ij} be the second fundamental form.
- In the following, if a, b, c are three vectors, (a,b,c) is the ordered triple product of the three vectors. This is just equal to $\det(a,b,c)$ as row vectors or as column vectors.

•

$$egin{aligned} h_{ij} = & \langle \mathbf{N}, \mathbf{X}_{ij}
angle = rac{(\mathbf{X}_{ij}, \mathbf{X}_1, \mathbf{X}_2)}{\sqrt{\det(g_{ij})}} \ = & : rac{\Theta_{ij}}{\sqrt{\det(g_{ij})}}. \end{aligned}$$

Now

$$K = \frac{\det(h_{ij})}{\det(g_{ij})} = \det(g_{ij})^{-2} \left(\Theta_{11}\Theta_{22} - \Theta_{12}^2\right)$$

$$\begin{split} \Theta_{11} \Theta_{22} = & \det \left(\begin{array}{ccc} \langle \mathbf{X}_{11}, \mathbf{X}_{22} \rangle & \langle \mathbf{X}_{11}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{11}, \mathbf{X}_{2} \rangle \\ \langle \mathbf{X}_{1}, \mathbf{X}_{22} \rangle & \langle \mathbf{X}_{1}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{1}, \mathbf{X}_{2} \rangle \\ \langle \mathbf{X}_{2}, \mathbf{X}_{22} \rangle & \langle \mathbf{X}_{2}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{2}, \mathbf{X}_{2} \rangle \end{array} \right) \\ = & \det \left(\begin{array}{ccc} \langle \mathbf{X}_{11}, \mathbf{X}_{22} \rangle & \frac{1}{2} (g_{11})_{1} & (g_{12})_{1} - \frac{1}{2} (g_{11})_{2} \\ (g_{12})_{2} - \frac{1}{2} (g_{22})_{1} & g_{11} & g_{12} \\ \frac{1}{2} (g_{22})_{2} & g_{12} & g_{22} \end{array} \right) \end{split}$$

$$\Theta_{12}^2 = \det \begin{pmatrix} \langle \mathbf{X}_{12}, \mathbf{X}_{12} \rangle & \langle \mathbf{X}_{12}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{12}, \mathbf{X}_{2} \rangle \\ \langle \mathbf{X}_{1}, \mathbf{X}_{12} \rangle & \langle \mathbf{X}_{1}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{1}, \mathbf{X}_{2} \rangle \\ \langle \mathbf{X}_{2}, \mathbf{X}_{12} \rangle & \langle \mathbf{X}_{2}, \mathbf{X}_{1} \rangle & \langle \mathbf{X}_{2}, \mathbf{X}_{2} \rangle \end{pmatrix}$$

$$= \det \begin{pmatrix} \langle \mathbf{X}_{12}, \mathbf{X}_{12} \rangle & \frac{1}{2}(g_{11})_{2} & \frac{1}{2}(g_{22})_{1} \\ \frac{1}{2}(g_{11})_{2} & g_{11} & g_{12} \\ \frac{1}{2}(g_{22})_{1} & g_{12} & g_{22} \end{pmatrix}$$

Hence

$$\begin{split} \Theta_{11}\Theta_{22} - \Theta_{12}^2 \\ = & \det \left(\begin{array}{ccc} \langle \mathbf{X}_{11}, \mathbf{X}_{22} \rangle - \langle \mathbf{X}_{12}, \mathbf{X}_{12} \rangle & \frac{1}{2}(g_{11})_1 & (g_{12})_1 - \frac{1}{2}(g_{11})_2 \\ (g_{12})_2 - \frac{1}{2}(g_{22})_1 & g_{11} & g_{12} \\ \frac{1}{2}(g_{22})_2 & g_{12} & g_{22} \end{array} \right) \\ - & \det \left(\begin{array}{ccc} 0 & \frac{1}{2}(g_{11})_2 & \frac{1}{2}(g_{22})_1 \\ \frac{1}{2}(g_{11})_2 & g_{11} & g_{12} \\ \frac{1}{2}(g_{22})_1 & g_{12} & g_{22} \end{array} \right). \end{split}$$

Now

$$\begin{split} \langle \mathbf{X}_{11}, \mathbf{X}_{22} \rangle - \langle \mathbf{X}_{12}, \mathbf{X}_{12} \rangle \\ &= \langle \mathbf{X}_{1}, \mathbf{X}_{22} \rangle_{1} - \langle \mathbf{X}_{1}, \mathbf{X}_{221} \rangle - \langle \mathbf{X}_{1}, \mathbf{X}_{12} \rangle_{2} + \langle \mathbf{X}_{1}, \mathbf{X}_{122} \rangle \\ &= \left((g_{12})_{2} - \frac{1}{2} (g_{22})_{1} \right)_{1} - \frac{1}{2} g_{11,22} \\ &= g_{12,12} - \frac{1}{2} (g_{11,22} + g_{22,11}). \end{split}$$

Hence

$$\begin{split} &(\det(g_{ij}))^2 \mathcal{K} \\ = &\det \left(\begin{array}{cccc} g_{12,12} - \frac{1}{2}(g_{11,22} + g_{22,11}) & \frac{1}{2}(g_{11})_1 & (g_{12})_1 - \frac{1}{2}(g_{11})_2 \\ &(g_{12})_2 - \frac{1}{2}(g_{22})_1 & g_{11} & g_{12} \\ &\frac{1}{2}(g_{22})_2 & g_{12} & g_{22} \end{array} \right) \\ &- \det \left(\begin{array}{cccc} 0 & \frac{1}{2}(g_{11})_2 & \frac{1}{2}(g_{22})_1 \\ \frac{1}{2}(g_{11})_2 & g_{11} & g_{12} \\ \frac{1}{2}(g_{22})_1 & g_{12} & g_{22} \end{array} \right). \end{split}$$

Hence K depends only on g_{ij} and their derivatives up to second order.

Christoffel symbols

Let
$$\mathbf{X}(u^1, u^2)$$
 is a coordinate parametrization. Let $\mathbf{X}_i = \mathbf{X}_{u^i}$, $g_{ij} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$, $(g^{ij}) = (g_{ij})^{-1}$. Then
$$\mathbf{X}_{ij} = \Gamma_{ij}^k \mathbf{X}_k + h_{ij} \mathbf{N}. \tag{1}$$

(Einstein summation convention: repeated indices mean summation.)

 Γ^k_{ij} are called the Christoffel symbols for this parametrization.

To compute Γ_{ij}^k

Lemma

$$\Gamma^k_{ij} = \Gamma^k_{ji}$$
 and

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{2} g^{kl} (g_{il,j} + g_{jl,i} - g_{ij,l}).$$

where $g_{ij,l} = \frac{\partial}{\partial u^l} g_{ij}$ etc.

Proof: $\mathbf{X}_{ij} = \mathbf{X}_{ji}$, so $\Gamma_{ij}^k = \Gamma_{ji}^k$.

$$\langle \mathbf{X}_{ij}, \mathbf{X}_{l} \rangle = \Gamma_{ij}^{k} g_{kl}$$

So

$$g_{il,j} - \langle \mathbf{X}_i, \mathbf{X}_{lj} \rangle = \Gamma_{ij}^k g_{kl}$$

So

$$g_{il,j} = \Gamma^k_{ij} g_{kl} + \Gamma^k_{lj} g_{ki}.$$

Proof, cont.

Hence we have

$$\begin{cases} g_{il,j} = & \Gamma_{ij}^k g_{kl} + \Gamma_{ij}^k g_{ki}. \\ g_{jl,i} = & \Gamma_{ji}^k g_{kl} + \overline{\Gamma_{ii}^k g_{kj}}. \\ g_{ij,l} = & \underline{\Gamma_{il}^k g_{kj}} + \overline{\Gamma_{jl}^k g_{ki}}. \end{cases}$$

Hence

$$g_{il,j}+g_{jl,i}-g_{ij,l}=2\Gamma_{ij}^kg_{kl}.$$

From this the result follows.

• Let M be the xy-plane parametrized by $\mathbf{X}(u,v)=(u,v,0)$. Then $\Gamma_{ii}^k=0$ for all i,j,k.

So
$$\Gamma^1_{22}=-r$$
, $\Gamma^2_{12}=r^{-1}$, all other Γ 's are zero.

- Let M be the xy-plane parametrized by $\mathbf{X}(u,v)=(u,v,0)$. Then $\Gamma_{ij}^k=0$ for all i,j,k.
- If we use polar coordinates, $\mathbf{X}(r,\theta)=(r\cos\theta,r\sin\theta,0)$. If $u^1\leftrightarrow r, u^2\leftrightarrow\theta$. Then $g_{11}=1,g_{12}=0,g_{22}=r^2$. So $g^{11}=1,g^{12}=0,g^{22}=r^{-2}$. Then

$$\Gamma_{ij}^{1} = \frac{1}{2}g^{1k}\left(g_{ik,j} + g_{jk,i} - g_{ij,k}\right) = \frac{1}{2}\left(g_{i1,j} + g_{j1,i} - g_{ij,1}\right)$$

Similarly,

$$\Gamma_{ij}^2 = \frac{1}{2}g^{2k}\left(g_{ik,j} + g_{jk,i} - g_{ij,k}\right) = \frac{1}{2}r^{-2}\left(g_{i2,j} + g_{j2,i} - g_{ij,2}\right).$$

So $\Gamma^1_{22}=-r$, $\Gamma^2_{12}=r^{-1}$, all other Γ 's are zero.

Examples, cont.

Consider the surface of revolution given by

$$\mathbf{X}(u,v) = (\alpha(v)\cos u, \alpha(v)\sin u, \beta(v))$$

with
$$\alpha > 0$$
. Consider $u^1 \leftrightarrow u, u^2 \leftrightarrow v$. Then $g_{11} = \alpha^2, g_{12} = 0, g_{22} = (\alpha')^2 + (\beta')^2$. So $g^{11} = \alpha^{-2}, g^{12} = 0, g^{22} = ((\alpha')^2 + (\beta')^2)^{-1}$.

$$\Gamma_{ij}^{1} = \frac{1}{2} g^{1k} \left(g_{ik,j} + g_{jk,i} - g_{ij,k} \right) = \frac{1}{2} \alpha^{-2} \left(g_{i1,j} + g_{j1,i} - g_{ij,1} \right).$$

So

$$\begin{split} \Gamma_{11}^1 &= \frac{1}{2}\alpha^{-2}g_{11,1} = 0, \ \Gamma_{22}^1 = \frac{1}{2}\alpha^{-2}g_{22,1} = 0, \\ \Gamma_{12}^1 &= \frac{1}{2}\alpha^{-2}g_{11,2} = \frac{\alpha'}{\alpha}. \end{split}$$

Examples, cont.

Similarly,

$$\Gamma_{ij}^2 = \frac{1}{2}g^{2k}\left(g_{ik,j} + g_{jk,i} - g_{ij,k}\right) = \frac{1}{2}g^{22}\left(g_{i2,j} + g_{j2,i} - g_{ij,2}\right).$$

Hence

$$\begin{split} \Gamma_{11}^2 &= -\frac{1}{2} g^{22} g_{11,2} = -\frac{\alpha \alpha'}{(\alpha')^2 + (\beta')^2}, \\ \Gamma_{22}^2 &= \frac{1}{2} g^{22} g_{22,2} = \frac{\alpha' \alpha'' + \beta' \beta''}{(\alpha')^2 + (\beta')^2}. \\ \Gamma_{12}^2 &= \frac{1}{2} g^{22} g_{22,1} = 0. \end{split}$$

Examples, cont.

In general, if $g_{12} = 0$, then

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{2} g^{kl} (g_{il,j} + g_{jl,i} - g_{ij,l}) = \frac{1}{2} g^{kk} (g_{ik,j} + g_{jk,i} - g_{ij,k})$$

no summation. So

$$\begin{split} &\Gamma_{11}^1 = \frac{1}{2}g^{11}g_{11,1}, \ \Gamma_{11}^2 = -\frac{1}{2}g^{22}g_{11,2}; \\ &\Gamma_{22}^1 = -\frac{1}{2}g^{11}g_{22,1}, \ \Gamma_{22}^2 = \frac{1}{2}g^{22}g_{22,2}; \\ &\Gamma_{12}^1 = \frac{1}{2}g^{11}g_{11,2}, \ \Gamma_{12}^2 = \frac{1}{2}g^{22}g_{22,1}. \end{split}$$

Second proof of Theorema Egregium of Gauss

Theorem

With the above notations, then

$$2K = g^{ij} \left(\Gamma^k_{ij,k} - \Gamma^k_{ik,j} + \Gamma^k_{lk} \Gamma^l_{ji} - \Gamma^k_{lj} \Gamma^l_{ki} \right) = g^{ij} (\Gamma^k_{i[j,k]} + \Gamma^k_{l[k} \Gamma^l_{j]i}).$$

Here $T_{[ij]k} = T_{ijk} - T_{jik}$ etc.

Compare with higher dimensional Riemannian curvature:

$$R_{ijk}^I = \Gamma_{ik,j}^I - \Gamma_{ij,k}^I + \Gamma_{js}^I \Gamma_{ik}^s - \Gamma_{ks}^I \Gamma_{ij}^s$$

Proof: Let S be the shape operator, then

$$-\mathbf{N}_i = \mathcal{S}(\mathbf{X}_i) = a_i^j \mathbf{X}_j.$$

$$\mathbf{X}_{ijm} = h_{ij,m} \mathbf{N} + h_{ij} \mathbf{N}_m + \Gamma_{ij,m}^k \mathbf{X}_k + \Gamma_{ij}^k \mathbf{X}_{km}$$
$$= \left(h_{ij,m} + \Gamma_{ij}^k h_{km} \right) \mathbf{N} + \left(-h_{ij} a_m^k + \Gamma_{ij,m}^k + \Gamma_{ij}^s \Gamma_{sm}^k \right) \mathbf{X}_k$$

Since $X_{ijm} = X_{imj}$, we have

$$\left(-h_{ij}a_m^k + \Gamma_{ij,m}^k + \Gamma_{ij}^s\Gamma_{sm}^k\right)\mathbf{X}_k = \left(-h_{im}a_j^k + \Gamma_{im,j}^k + \Gamma_{im}^s\Gamma_{sj}^k\right)\mathbf{X}_k$$

Or

$$h_{ij}a_m^k - h_{im}a_j^k = \Gamma_{ij,m}^k - \Gamma_{im,j}^k + \Gamma_{ij}^s\Gamma_{ms}^k - \Gamma_{im}^s\Gamma_{js}^k$$

Proof, cont.

Now the matrix of the shape operator is:

$$(a_i^j) = (h_{ij})(g_{ij})^{-1}$$

So
$$h_{ji} = h_{ij} = a_i^I g_{Ij} = a_j^I g_{Ii}$$
. Hence

$$a_i^l g_{lj} a_m^k - a_m^l g_{li} a_j^k = \Gamma_{ij,m}^k - \Gamma_{im,j}^k + \Gamma_{ij}^s \Gamma_{ms}^k - \Gamma_{im}^s \Gamma_{js}^k.$$

Let m = k and sum on k

$$g^{ij} \left(\Gamma^{k}_{ij,k} - \Gamma^{k}_{ik,j} + \Gamma^{s}_{ij} \Gamma^{k}_{ks} - \Gamma^{s}_{ik} \Gamma^{k}_{js} \Gamma_{ij,k} \right)$$

$$= g^{ij} \left(a^{l}_{i} g_{lj} a^{k}_{k} - a^{l}_{k} g_{li} a^{k}_{j} \right)$$

$$= \left(\sum_{i} a^{i}_{i} \right)^{2} - \sum_{l,k} a^{k}_{l} a^{l}_{k}$$

$$= 2a_{11}a_{22} - 2a_{1}^{2} a_{2}^{1}$$

$$= 2K$$

Compatibility conditions

Given (g_{ij}) which is symmetric and positive definite and (h_{ij}) which is symmetric, can we find $\mathbf{X}(u^1,u^2)$ so that the first fundamental form is h_{ij} ? If \mathbf{X}_i exist, then we can find \mathbf{X} . The restriction on \mathbf{X}_i are

$$\mathbf{X}_{ijk} = \mathbf{X}_{ikj}, \ \mathbf{N}_{ij} = \mathbf{N}_{ji}.$$

Hence we have

$$\left(-h_{ij}a_m^k + \Gamma_{ij,m}^k + \Gamma_{ij}^s\Gamma_{sm}^k\right)\mathbf{X}_k = \left(-h_{im}a_j^k + \Gamma_{im,j}^k + \Gamma_{im}^s\Gamma_{sj}^k\right)\mathbf{X}_k$$

with $a_i^j = h_{il}g^{lj}$. We have three relations for each \mathbf{X}_i . Now

$$-\mathbf{N}_{ij} = (a_i^k \mathbf{X}_k)_j$$

$$= (a_i^k)_j \mathbf{X}_k + a_i^k (\Gamma_{jk}^l \mathbf{X}_l + a_i^k h_{jk} \mathbf{N})$$

$$= ((a_i^k)_j + a_i^l \Gamma_{jl}^k) \mathbf{X}_k + a_i^k h_{jk} \mathbf{N}$$

So we also need, for k = 1, 2

$$(a_i^k)_j + a_i^l \Gamma_{jl}^k = (a_j^k)_i + a_j^l \Gamma_{il}^k.$$

These are called Gauss equations and Mainardi-Codazzi equations respectively.