Assignment 5, Due 11:59 pm, Thursday Nov 19, 2020

(1) (a) Find the absolute value of the curvature of the ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

at the points (a, 0) and (0, b). Assuming a, b > 0.

(b) Intersect the cylinder $C = \{(x, y, z) | x^2 + y^2 = 1\}$ with a plane passing through the x-axis and making an angle θ with the xy-plane. Show that the curve α is an ellipse. Also find the absolute value of the geodesic curvature of α at the points where α meets their axes (i.e. major and minor axes of the ellipse).

- (2) Let $\alpha(\tau)$ be a regular curve on a regular surface M, where τ may not be proportional to arc length. Let $\alpha' = \frac{\partial \alpha}{\partial \tau}$, etc. Prove that after reparametrization, α is a geodesic if and only if $(\alpha'')^T = \lambda(\tau)\alpha'$ for some smooth function τ on α .
- (3) Write down the differential equations for the geodesics on the torus:

$$\mathbf{X}(u, v) = ((a + r\cos v)\cos u, (a + r\cos v)\sin u, r\sin v)$$

with a > r > 0. Also, show that if α is a geodesic start at a point on the topmost parallel $(a \cos u, a \sin u, r)$ and is tangent to this parallel, then α will stay in the region with $-\pi/2 \le v \le \pi/2$. Find also the geodesic curvature of the topmost parallel.

(4) Let $\mathbf{X} : U \to M$, $(u_1, u_2) \to \mathbf{X}(u_1, u_2)$, be a coordinate parametization, with U being an open set in \mathbb{R}^2 . Suppose the first fundamental form in this coordinate satisfies $g_{12} = 0$.

(a) Let $g_{11} = E, g_{22} = G$. Find the equations of geodesic and find Γ_{ij}^k . in terms of E, G and their derivatives.

(b) Suppose $g_{11} = g_{22} = \exp(2f)$ for some smooth function f, Find Γ_{ij}^k in terms of f and its derivatives.

(5) With the same assumptions and notation as in the previous exercise, part (b). Let e₁ = X₁/|X₁|, e₂ = X₂/|X₂|, and N = e₁ × e₂. Let α(s) be a geodesic on M such that α(s) = X(u₁(s), u₂(s)). Let θ(s) be a smooth function on s such that α'(s) = e₁(s) cos θ(s) + e₂(s) sin θ(s), where e_i(s) = e_i(α(s)).
(a) Show that a := N × α' = -e₁(s) sin θ(s) + e₂(s) cos θ(s).
(b) Show also that

$$k_g = -\langle \alpha', \mathbf{a}' \rangle$$

= exp(-2f) $\langle \frac{d}{ds} \mathbf{X}_1, \mathbf{X}_2 \rangle + \theta'$
= $\left(-u' \frac{\partial f}{\partial v} + v' \frac{\partial f}{\partial u} \right) + \theta'.$

(Note that if
$$f = 1$$
, i.e. M is a plane, then $k_g = \theta'$.)