Assignment 4, Due 11:59 pm, Thursday Nov 5, 2020
(1) Show that the helicoid:
X(u,v) = (asinh v cos u, asinh v sin u, au),
and the Enneper’s surface
3 3
X(u,v) = <u— % +uv?, v — % +vu?, u? —v2> .

are minimal surfaces.

(2) A surface of revolution M parametrized by X (u,v) = (u, h(u) cosv, h(u) sinv)
has nonzero constant mean curvature if and only if the function
h(u) satisfies
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where a > 0 and b are constants.
(Hint: Suppose H = —1/(2a) with a > 0. Show that
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(3) Prove that if X is an orthogonal parametrization, i.e. F = 0,
then the Gaussian curvature is given by:
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Suppose in addition £ = G everywhere, then
K =—e 2Af
where f is such that £ = ¢*/ (i.e. f = 1logF), and A is the
Laplacian operator:
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(4) Verify that the surfaces:

X(u,v) = (ucosv,usinv,logu)
and
Y (u,v) = (ucosv,usinv,v)
have equal Gaussian curvature at that points X(u,v),Y (u,v)

but the coefficients of the first fundamental forms at points

X(u,v), Y (u,v) are not the same.
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(5) Suppose a regular surface M is parametrized by u',u? so that
the first fundamental form is given by
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Find the Gaussian curvature of the surface. Here we assume
that (u')? + (u?)? < 1.
(Remark: Compare the coefficentes of the first fundamental
form of the sphere in stereographic projection in Problem 5,
assignment 2.)

g12 = 0.



