Assignment 3, Due 16/10/2020 (Friday) on or before 11:59 pm

(1) Let M_1, M_2 be two regular surfaces and let $F: M_1 \to M_2$ be a smooth map. Let $p \in M$ and $q = f(p) \in M_2$. Define the differential $dF: T_p(M_1) \to T_q(M_2)$ as follows: For any $\mathbf{v} \in T_p(M)$, let $\alpha(t)$ be a smooth curve on M_1 so that $\alpha(0) = p, \alpha'(0) = \mathbf{v}$. Define

$$dF_p(\mathbf{v}) = \frac{d}{dt}F(\alpha(t))|_{t=0}.$$

Prove that dF_p is well-defined and is linear.

(Consider the Gauss map $\mathbf{N}: M \to \mathbb{S}^2$. One can identify $T_p(M)$ with $T_{\mathbf{N}(p)}(\mathbb{S}^2)$. Then $\mathcal{S}_p = -d\mathbf{N}_p$.)

- (2) Consider the surface of revolution by rotating the curve $\alpha(v) = (\phi(v), 0, \psi(v))$ on the xz plane about the z-axis: $\mathbf{X}(u, v) = (f(v)\cos u, f(v)\sin u, \psi(v))$. Assuming v is the arc length of α . Find the coefficients of the first and second fundamental forms of the surface with respect to this parametrization. Find also the Gaussian curvature and mean curvature.
- (3) Consider the tractrix Let $\alpha:(0,\frac{\pi}{2})\to xz$ -plane given by

$$\alpha(t) = \left(\sin t, 0, \cos t + \log \tan \frac{t}{2}\right).$$

Show that the Gaussian curvature of the surface of revolution obtained by rotating α about the z-axis is -1. The surface is called the pseudosphere.

- (4) Let $M = \{(x, y, z) | z = x^2 + ky^2\}$, with k > 0. Show that $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$ form a basis of $T_p(M)$ where p = (0, 0, 0). Let \mathbf{N} be the unit normal of M pointing upward, i.e. $\langle \mathbf{N}, e_3 \rangle > 0$ where $e_3 = (0, 0, 1)$. Find the matrix of \mathcal{S}_p : $T_p(M) \to T_p(M)$ with respect to the ordered basis $\{e_1, e_2\}$. Find the principal curvatures of M at p.
- (5) (Euler formula) Let M be an orientable regular surface with a unit normal vector field \mathbf{N} . Let $p \in M$ and let k_1 , k_2 be the principal curvatures with eigenvectors e_1 and e_2 which are orthonormal. Let $\mathbf{v} \in T_p(M)$ such that $\mathbf{v} = \cos \theta e_1 + \sin \theta e_2$. Prove that the normal curvature of the curve α passing through p with tangent vector v is given by

$$k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta.$$

- (6) (Gaussian curvature of an ellipsoid) Let M be a regular orientable surface with unit normal vector field \mathbf{N} . Let f be a smooth function on M which is nowhere zero. Let $p \in M$ and let \mathbf{v}_1 and \mathbf{v}_2 form an orthonormal basis for $T_p(M)$.
 - (i) Prove that the Gaussian curvature of M at p is given by:

$$K = \frac{\langle d(f\mathbf{N})(\mathbf{v}_1) \times d(f\mathbf{N})(\mathbf{v}_2), \mathbf{N} \rangle}{f^2}.$$

Note $d(f\mathbf{N})(\mathbf{v})$ is defined as follow: let α be the curve on M with $\alpha(0) = p$, $\alpha'(0) = \mathbf{v}$, then

$$d(f\mathbf{N})(\mathbf{v}) = \frac{d}{dt}(f(\alpha(t))\mathbf{N}(\alpha(t)))\big|_{t=0}.$$

(ii) Let M be the ellipsoid

$$h(x, y, z) := \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Let f be the restriction of the function

$$\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^{\frac{1}{2}}.$$

Apply (i) to show that the Gaussian curvature is given by

$$K = \frac{1}{f^4 a^2 b^2 c^2}.$$

(Hint: We may take $\mathbf{N} = \frac{\nabla h}{|\nabla h|}$. Note that $|\nabla h| = 2f$ and so $d(f\mathbf{N})(\mathbf{v}) = \left(\frac{v_1}{a^2}, \frac{v_2}{b^2}, \frac{v_3}{c^2}\right)$ if $\mathbf{v} = (v_1, v_2, v_3)$.)