
Orientation of regular surfaces

Definition

Let M be a regular surface in R3. M is said to be orientable if
there is a unit vector field N on M such that

(i) N is smooth;

(ii) N has unit length;

(iii) N is orthogonal to Tp(M) at all point.

If such N exists, then it is called an orientation of M.

The shape operator and the second fundamental form
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Basic facts

If N is an orientation, then −N is also an orientation. There
are exactly two orientations on an orientable surface.

N is smooth means that if N = (N1,N2,N3) then each Ni is a
smooth function.

N is continuous and satisfies (ii), (iii) above that N is smooth.

The shape operator and the second fundamental form
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An instrinsic definition

We have the following intrinsic characterization of orientable
surface.

Proposition

M is orientable if and only if there exist coordinate charts covering
M so that the change of coordinate matrices have positive
determinant.
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Proof

Proof: (Sketch)

If M is orientable and N is an orientation.

Let (Xα,Uα) be coordinate charts covering M. If the
coordinates of Uα are denoted by (u, v), then we may choose
(u, v) so that

N =
(Xα)u × (Xα)v
|(Xα)u × (Xα)v |

. ( Why?)

Then these are the coordinate charts we want.
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Proof, cont.

Conversely, if (Xα,Uα) be coordinate charts covering M so that
the change of coordinate matrices have positive determinant.
Define N as above, then this gives an orientation of M. (Why?)
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A non-orientable surface: the Möbius strip

X(θ, v) =(cos θ, sin θ, 0) + v · (sin
1

2
θ cos θ, sin

1

2
θ sin θ, cos

1

2
θ)

=a(θ) + vw(θ); (−π < θ < π, −1

2
< v <

1

2
).

lim
θ→−π

N(θ, 0) = (0, 0,−1);

lim
θ→π

N(θ, 0) = (0, 0, 1).

On the other hand, x(π, 0) = (−1, 0, 0) = x(−π, 0)
Hence the Mobiüs strip is not orientable.
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The shape operator

Let M be a regular surface in R3. Suppose M is orientable with
orientaion N. That is:

N is smooth;

N has unit length;

N is orthogonal to Tp(M) at all point.

Definition

The shape operator Sp with respect to N at p is the operator
defined as follows: Let v ∈ Tp(M) and let α(t), −ε < 0 < ε be a
smooth curve on M with α(0) = p, α′(0) = v. Then Sp(v) is
defined as

Sp(v) = − d

dt
(N(α(t)))

∣∣
t=0

.
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Remarks

Notice that there is a negative sign on the RHS in the above.

Sp is also called the Weingarten map of M at p.

If N is a unit normal vector field, then N1 := −N is also a
unit normal vector field. The shape operator with respect to
N1 is the negative of the shape operator with respect to N.
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Basic facts

Proposition

With the above notation, the following are true:

(i) Sp is well-defined.

(ii) Sp is a linear map from Tp(M) to Tp(M).

(iii) Sp is self-adjoint with respect to the first fundamental form.

(vi) S is smooth.

The shape operator and the second fundamental form
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Sp is well-defined

Proof: (Sketch) Let X(u, v) be a local parametrization so that
X(u0, v0) = p. Then N = N(u, v).
Let α(t) = X(u(t), v(t)) so that (u(0), v(0)) = (u0, v0). Then

dN(α(t))

dt
= Nuu′ + Nvv ′.

Let v = aXu + bXv . Now v = α′(0) = Xuu′ + Xvv ′, so
u′ = a, v ′ = b at p. Hence

dN(α(t))

dt
= aNu + bNv .

So Sp is well-defined.
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Sp is a linear map from Tp(M) to Tp(M)

Note that Nu,Nv are in Tp(M) (Why?). So
Sp : Tp(M)→ Tp(M). It is also linear. (Why?)

The shape operator and the second fundamental form



Sp is self-adjoint

To prove Sp is self adjoint. Let v,w ∈ Tp(M). Let
v = aXu + bXv , w = cXu + dXv . Then

−〈Sp(v),w〉 =〈aNu + bNv , cXu + dXv 〉
=ac〈Nu,Xu〉+ bd〈Nv ,Xv + ad〈Nu,Xv 〉+ bc〈Nv ,Xu〉

−〈Sp(v),w〉 = ac〈Nu,Xu〉+bd〈Nv ,Xv +cb〈Nu,Xv 〉+ da〈Nv ,Xu〉

So they are equal. (Why?)
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The second fundamental form

Definition

Let S be the shape operator with respect to a unit normal vector
field N, the second fundamental form IIp of M at p (with respect
to N) is the bilinear form IIp(v,w) = g(Sp(v),w) = 〈Sp(v),w〉.

Proposition

IIp is a symmetric bilinear form on Tp(M).
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Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let
N = Xu × Xv/|Xu × Xv |.

Definition

The coefficients of the second fundamental form e, f , g at p are
defined as:

e =IIp(Xu,Xu);

f =IIp(Xu,Xv );

g =IIp(Xv ,Xv ).

Notation: Suppose we use (u1, u2) as coordinates, and
N = X1 × X2/|X1 × X2|, then the coefficients of the second
fundamental form are denoted by

h11 = IIp(X1,X1); h12 = IIp(X1,X2) = h21; h22 = IIp(X2,X2).
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To compute e, f , g

Proposition

e =〈N,Xuu〉 =
det (Xu,Xv ,Xuu)√

EG − F 2

f =〈N,Xuv 〉 =
det (Xu,Xv ,Xuv )√

EG − F 2
;

g =〈N,Xvv 〉 =
det (Xu,Xv ,Xvv )√

EG − F 2
.
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Gaussian curvature and mean curvature

Suppose Sp(Xu) = a11Xu + a21Xv ,Sp(Xv ) = a12Xu + a22Xv . Then
the matrix of Sp with respect to the ordered basis β = {Xu,Xv} is
given by

[Sp]β =

(
a11 a12
a21 a22

)

Definition

The Gaussian curvature K (p) of M at p is the determinant of Sp.
The mean curvature H(p) of M at p is 1/2×the trace of Sp.
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Proposition

1 Let (
a11 a12
a21 a22

)
be the matrix of Sp with respect to the ordered basis
{Xu,Xv}. Then(

a11 a12
a21 a22

)
=

(
e f
f g

)(
E F
F G

)−1
.

2 The Gaussian curvature K (p) and the mean curvature H(p)
of M at p are given by

K (p) =
eg − f 2

EG − F 2
,

and

H(p) =
1

2

eG − 2fF + gE

EG − F 2
.
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Two remarks

Remark: (i) Gaussian curvature is invariant under
reparametrization. (ii) Mean curvature is invariant under
orientation preserving reparametrization.
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