The shape operator and the second fundamental form

1. Orientation of regular surfaces

Definition 1. Let M be a regular surface in \mathbb{R}^3 . M is said to be orientable if there is a unit vector field \mathbf{N} on M such that

- (i) **N** is smooth;
- (ii) N has unit length;
- (iii) N is orthogonal to $T_p(M)$ at all point.

If such N exists, then it is called an orientation of M.

Facts:

- If N is an orientation, then -N is also an orientation. There are exactly two orientations on an orientable surface.
- **N** is smooth means that if **N** = (N_1, N_2, N_3) then each N_i is a smooth function.
- N is continuous and satisfies (ii), (iii) above that N is smooth.

We have the following intrinsic characterization of orientable surface.

Proposition 1. M is orientable if and only if there exist coordinate charts covering M so that the change of coordinate matrices have positive determinant.

Proof. (Sketch) If M is orientable and \mathbb{N} is an orientation. Let $(\mathbf{X}_{\alpha}, U_{\alpha})$ be coordinate charts covering M. If the coordinates of U_{α} are denoted by (u, v), then we may choose (u, v) so that

$$\mathbf{N} = \frac{(\mathbf{X}_{\alpha})_u \times (\mathbf{X}_{\alpha})_v}{|(\mathbf{X}_{\alpha})_u \times (\mathbf{X}_{\alpha})_v|}. \text{ (Why?)}$$

Then these are the coordinate charts we want.

Conversely, if $(\mathbf{X}_{\alpha}, U_{\alpha})$ be coordinate charts covering M so that the change of coordinate matrices have positive determinant. Define \mathbf{N} as above, then this gives an orientation of M. (Why?)

2. Möbius strip

$$\mathbf{x}(\theta, v) = (\cos \theta, \sin \theta, 0) + v(\sin \frac{1}{2}\theta \cos \theta, \sin \frac{1}{2}\theta \sin \theta, \cos \frac{1}{2}\theta) = \mathbf{a}(\theta) + v\mathbf{w}(\theta)$$
$$-\pi < \theta < \pi, \quad -\frac{1}{2} < v < \frac{1}{2}.$$

$$\lim_{\theta \to -\pi} \mathbf{N}(\theta, 0) = (0, 0, -1);$$
$$\lim_{\theta \to \pi} \mathbf{N}(\theta, 0) = (0, 0, 1).$$

On the other hand, $\mathbf{x}(\pi, 0) = (-1, 0, 0) = \mathbf{x}(-\pi, 0)$ Hence the Mobiüs strip is not orientable.

3. The shape operator

Let M be a regular surface in \mathbb{R}^3 . Suppose M is orientable with orientaion \mathbf{N} . That is:

- N is smooth;
- N has unit length;
- N is orthogonal to $T_p(M)$ at all point.

Definition 2. The *shape operator* S_p with respect to \mathbf{N} at p is the operator defined as follows: Let $\mathbf{v} \in T_p(M)$ and let $\alpha(t)$, $-\epsilon < 0 < \epsilon$ be a smooth curve on M with $\alpha(0) = p$, $\alpha'(0) = \mathbf{v}$. Then $S_p(\mathbf{v})$ is defined as

$$S_p(\mathbf{v}) = -\frac{d}{dt}(N(\alpha(t)))\big|_{t=0}.$$

Remark:

- Notice that there is a negative sign on the RHS in the above.
- S_p is also called the Weingarten map of M at p.
- If N is a unit normal vector field, then $N_1 := -N$ is also a unit normal vector field. The shape operator with respect to N_1 is the negative of the shape operator with respect to N.

Proposition 2. With the above notation, the following are true:

- (i) S_p is well-defined.
- (ii) S_p is a linear map from $T_p(M)$ to $T_p(M)$.
- (iii) S_p is self-adjoint with respect to the first fundamental form.
- (vi) S is smooth.

Proof. (Sketch) Let $\mathbf{X}(u, v)$ be a local parametrization so that $\mathbf{X}(u_0, v_0) = p$. Then $\mathbf{N} = \mathbf{N}(u, v)$.

Let
$$\alpha(t) = \mathbf{X}(u(t), v(t))$$
 so that $(u(0), v(0)) = (u_0, v_0)$. Then

$$\frac{d\mathbf{N}(\alpha(t))}{dt} = \mathbf{N}_u u' + \mathbf{N}_v v'.$$

Let $\mathbf{v} = a\mathbf{X}_u + b\mathbf{X}_v$. Now $\mathbf{v} = \alpha'(0) = \mathbf{X}_u u' + \mathbf{X}_v v'$, so u' = a, v' = b at p. Hence

$$\frac{d\mathbf{N}(\alpha(t))}{dt} = a\mathbf{N}_u + b\mathbf{N}_v.$$

So S_p is well-defined.

Note that \mathbf{N}_u , \mathbf{N}_v are in $T_p(M)$ (Why?). So $\mathcal{S}_p : T_p(M) \to T_p(M)$. It is also linear. (Why?)

To prove S_p is self adjoint. Let $\mathbf{v}, \mathbf{w} \in T_p(M)$. Let $\mathbf{v} = a\mathbf{X}_u + b\mathbf{X}_v$, $\mathbf{w} = c\mathbf{X}_u + d\mathbf{X}_v$. Then

$$-\langle \mathcal{S}_{p}(\mathbf{v}), \mathbf{w} \rangle = \langle a\mathbf{N}_{u} + b\mathbf{N}_{v}, c\mathbf{X}_{u} + d\mathbf{X}_{v} \rangle$$

$$= ac\langle \mathbf{N}_{u}, \mathbf{X}_{u} \rangle + bd\langle \mathbf{N}_{v}, \mathbf{X}_{v} + ad\langle \mathbf{N}_{u}, \mathbf{X}_{v} \rangle + bc\langle \mathbf{N}_{v}, \mathbf{X}_{u} \rangle$$

$$-\langle \mathcal{S}_{p}(\mathbf{v}), \mathbf{w} \rangle = ac\langle \mathbf{N}_{u}, \mathbf{X}_{u} \rangle + bd\langle \mathbf{N}_{v}, \mathbf{X}_{v} + cb\langle \mathbf{N}_{u}, \mathbf{X}_{v} \rangle + da\langle \mathbf{N}_{v}, \mathbf{X}_{u} \rangle$$
So they are equal. (Why?)
$$\mathcal{S}_{p} \text{ is smooth. (Why?)} \qquad \Box$$

Definition 3. Let S be the shape operator with respect to a unit normal vector field \mathbf{N} , the second fundamental form \mathbb{II}_p of M at p (with respect to \mathbf{N}) is the bilinear form $\mathbb{II}_p(\mathbf{v}, \mathbf{w}) = g(S_p(\mathbf{v}), \mathbf{w}) = \langle S_p(\mathbf{v}), \mathbf{w} \rangle$.

Proposition 3. \mathbb{II}_p is a symmetric bilinear form on $T_p(M)$.

4. Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v/|\mathbf{X}_u \times \mathbf{X}_v|$.

Definition 4. The coefficients of the second fundamental form e, f, g at p are defined as:

$$e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u);$$

$$f = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_v);$$

$$g = \mathbb{II}_p(\mathbf{X}_v, \mathbf{X}_v).$$

Notation: Suppose we use (u^1, u^2) as coordinates, and $\mathbf{N} = \mathbf{X}_1 \times \mathbf{X}_2/|\mathbf{X}_1 \times \mathbf{X}_2|$, then the coefficients of the second fundamental form are denoted by

$$h_{11} = \mathbb{II}_p(\mathbf{X}_1, \mathbf{X}_1); h_{12} = \mathbb{II}_p(\mathbf{X}_1, \mathbf{X}_2) = h_{21}; h_{22} = \mathbb{II}_p(\mathbf{X}_2, \mathbf{X}_2).$$

Proposition 4.

$$e = \langle \mathbf{N}, \mathbf{X}_{uu} \rangle = \frac{\det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu})}{\sqrt{EG - F^2}}$$
$$f = \langle \mathbf{N}, \mathbf{X}_{uv} \rangle = \frac{\det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uv})}{\sqrt{EG - F^2}};$$
$$g = \langle \mathbf{N}, \mathbf{X}_{vv} \rangle = \frac{\det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{vv})}{\sqrt{EG - F^2}}.$$

5. Gaussian curvature and mean curvature

Suppose $S_p(\mathbf{X}_u) = a_1^1 \mathbf{X}_u + a_1^2 \mathbf{X}_v$, $S_p(\mathbf{X}_v) = a_2^1 \mathbf{X}_u + a_2^2 \mathbf{X}_v$. Then the matrix of S_p with respect to the ordered basis $\beta = {\mathbf{X}_u, \mathbf{X}_v}$ is given by

$$[\mathcal{S}_p]_eta = \left(egin{array}{cc} a_1^1 & a_2^1 \ a_1^2 & a_2^2 \end{array}
ight)$$

Definition 5. The Gaussian curvature K(p) of M at p is the determinant of \mathcal{S}_p . The mean curvature H(p) of M at p is $1/2 \times$ the trace of \mathcal{S}_p .

Proposition 5. (1) Let

$$\left(\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array}\right)$$

be the matrix of S_p with respect to the ordered basis $\{X_u, X_v\}$. Then

$$\left(\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array}\right) = \left(\begin{array}{cc} e & f \\ f & g \end{array}\right) \left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1}.$$

(2) The Gaussian curvature K(p) and the mean curvature H(p) of M at p are given by

$$K(p) = \frac{eg - f^2}{EG - F^2},$$

and

$$H(p) = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}.$$

Remark: (i) Gaussian curvature is invariant under reparametrization. (ii) Mean curvature is invariant under *orientation preserving* reparametrization.