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o Let M=S2={x>+y?+2z2=1}. N=(x,y,z). Suppose
a(t) = (x(t),y(t),z(t)) is a curve on M with o/(0) = v.
Then v = (x(0), y’(0), 2/(0).

So Sp(v) = =L N(x(t), y(t), 2(t))|t=0 = —v. And S, = —Id.
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o Let M = {x? + y2 = 1} the circular cylinder. Parametrize M
by X(u, v) = (cos u,sin u, v). Then
X, = (—sinu,cosu,0),X, = (0,0,1).
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o Let M be the hyperboloid M = {z = y? — x?}. We can
parametrize it by X(u,v) = (u, v, v? — u?). Then
X, = (1,0, —2u), X, = (0,1,2v) and
— 1 —v. 1
N_ (u2+V2+%)%(u7 V72).
At p =(0,0,0) = X(0,0), and if X(u(t),v(t)) is a curve
through p, then % = (2v/,2v',0). So
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The second fundamental form

Definition

Let S be the shape operator with respect to a unit normal vector
field N, the second fundamental form I, of M at p (with respect
to N) is the bilinear form Il,(v,w) = g(Sp(v), w) = (Sp(v),w).

Proposition

I, is a symmetric bilinear form on T,(M).

Proof:
(v, w) = (Sp(v),w) = (v,Sp(w)) = I, (w, v)

because S, is self-adjoint.



Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let
N =X, x X,/|X, x X,]|.

Definition

The coefficients of the second fundamental form e, f, g at p are
defined as:

e =Il,(Xy, Xy);

f =II,(Xy, Xy);

g =II,(X,, X,).

Notation: Suppose we use (u!, u?) as coordinates, and
N = X; x X3/|X1 x Xz|, then the coefficients of the second
fundamental form are denoted by

hi1 = 1I,(X1, X1); 12 = IIp(X1, X2) = hoy; hoo = T,(X2, X2).
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Coefficients of the second fundamental form, cont.

Sp(Xy) = —%N = —N,. Hence

e =1II,(Xy, Xy) = (Sp(Xy), Xu) = —(Ny, Xy) = (N, X,,).

Similarly, f = (N, Xyu,),g = (N, X,,).



To compute e, f, g

det (X, Xy, Xuy)
VEG _ P2

det (Xu, Xy, Xuy)

F=(N,Xy) = -
2t VEG — F?

det (Xy, Xy, X))

—(N,X,,) = .
SRl = e

e =(N,X,,) =




o Consider the torus:
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o Consider the torus:
X(u,v) = ((a+ rcosu)cosv,(a+ rcosu)sinv,rsinu). Then

X, = (—=rsinucosv,—rsinusinv, rcos u)

X, = (—(a+ rcosu)sinv,(a+ rcosu)cosv,0)
Xuu = (—rcosucosv,—rcosusinv,—rsin u)

Xy, = (rsinusinv, —sinucosv,0)

X = (—(a+ rcosu)cosv,—(a+ rcosu)sinv,0)

So E=r?F=0,G=(a+rcosu)’.

e =det(X,, Xy, Xyy)/r(a+ rcosu) =r.
f=0,g =cosu(a—+ rcosu).
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@ Recall: suppose V? is vector space V2. Let B = {e1, ez} be
an ordered basis for Vs. Let v € V2, then v = cie; + ces.
Then [c1, 2] as a column vector if called the coordinates of
v w.r.t. 3, denoted by [v]g.

@ Let T be a linear map on V2. Then T(e;) = Z?:l a{:ej.
1 .1
Then the matrix of T w.r.t. 5is [T]z = < a% a% >
a N
e We have [T(v)]g = [T]g[v]s- E.g.

ren=(39)(3)-(3)

@ There are two invariants of T: its determinant and its trace.
They are independent of the ordered basis chosen.



Gaussian curvature and mean curvature, cont.

Suppose Sp(X,) = alX, + a2X,,Sp(X,) = a3 X, + a3X,. Then
the matrix of S, with respect to the ordered basis 5 = {X,, X, } is

given by
1 .1
_( 91 9
b= (% %)

Definition

The Gaussian curvature K(p) of M at p is the determinant of Sp.
The mean curvature H(p) of M at p is 1/2x the trace of Sp.




Proposition

Q Let —
9 9
< a a3 >

be the matrix of S, with respect to the ordered basis
{Xu,Xy}. Then

al a3\ (e f E F\ !
a2 a2 ) \f g F G '

@ The Gaussian curvature K(p) and the mean curvature H(p)
of M at p are given by

eg — f?

K(p) = EC_FY

and
1eG — 2fF + gE

HP) =P
D




If we use coordinates (u', u?) and coefficients of the first and
second fundamental forms are gj;, h;j, then

al al _
o h11h22 — h%z N det(h,-j)

K(p) = = ,
(p) g11822 — g%  det(gy)

and

_ L1 hugrn —2mogio + hogu 1 Z hiig
2 g11822 — & 24 !



Two remarks

Remark:

@ Gaussian curvature is invariant under reparametrization.



Two remarks

Remark:
@ Gaussian curvature is invariant under reparametrization.

@ Mean curvature is invariant under orientation preserving
reparametrization.
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Proof of the proposition

Proof:

It is more easy to use parametrization of the form X(u!, u?).
Denote X; = e, X; = e>. If the matrix of S, w.r.t. this
ordered basis 3 is given above. Then

Sp(ei) = 212:1 aje;.

Let gjj = (ei, )

Now hj = (Sp(e/), €j) = (34 afex. €j) = 3 afgjx- Hence
[hij] = [S]slgij]- So

[S15 = [hy]lez] ™



@ Let M be a plane. We know that S, = 0 everywhere. So the
Gaussian curvature is 0, the mean curvature is zero.
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curvature is -1.



@ Let M be a plane. We know that S, = 0 everywhere. So the
Gaussian curvature is 0, the mean curvature is zero.

@ Let M be the unit sphere. If we choose N as before, then S is
negative of the identity. So Gaussian curvature is 1 and mean
curvature is -1.

@ For the torus, and the choice of normal vector as before, we
have E =r? F =0,G = (a+ rcosu)?.

e = det(Xy, Xy, Xyy)/r(a+ rcosu) =r.
f=0,g =cosu(a+ rcosu). Hence

cosu

b —
r(a+ rcosu)

SoK>Ofor—%7r<u<%7r,KzOonu:%w,—%w,K<O
fOI’%’/T<U<%7T.



