Examples of S_p

• Let $M=\{ax+by+cz+d=0\}$. Then we can choose $\mathbf{N}=\frac{(a,b,c)}{\sqrt{a^2+b^2+c^2}}$. So $\mathcal{S}_p(\mathbf{v})=\mathbf{0}$.

Examples of S_p

- Let $M = \{ax + by + cz + d = 0\}$. Then we can choose $\mathbf{N} = \frac{(a,b,c)}{\sqrt{a^2 + b^2 + c^2}}$. So $\mathcal{S}_p(\mathbf{v}) = \mathbf{0}$.
- Let $M = \mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$. $\mathbf{N} = (x, y, z)$. Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a curve on M with $\alpha'(0) = \mathbf{v}$. Then $\mathbf{v} = (x'(0), y'(0), z'(0)$.

Examples of S_p

- Let $M = \{ax + by + cz + d = 0\}$. Then we can choose $\mathbf{N} = \frac{(a,b,c)}{\sqrt{2^2 + b^2 + c^2}}$. So $\mathcal{S}_p(\mathbf{v}) = \mathbf{0}$.
- Let $M = \mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$. $\mathbf{N} = (x, y, z)$. Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a curve on M with $\alpha'(0) = \mathbf{v}$. Then $\mathbf{v} = (x'(0), y'(0), z'(0)$.

So
$$S_p(\mathbf{v}) = -\frac{d}{dt}N(x(t), y(t), z(t))|_{t=0} = -\mathbf{v}$$
. And $S_p = -\mathrm{Id}$.

• Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u, v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0, 0, 1)$.

• Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u,v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0,0,1)$. We can take $\mathbf{N} = (\cos u, \sin u, 0)$.

• Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u,v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0,0,1)$. We can take $\mathbf{N} = (\cos u, \sin u, 0)$. Then $\mathcal{S}_p(\mathbf{X}_u) = -\mathbf{N}_u = -(-\sin u, \cos u, 0) = -\mathbf{X}_u$. $\mathcal{S}_p(\mathbf{X}_v) = \mathbf{0}$.

- Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u,v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0,0,1)$. We can take $\mathbf{N} = (\cos u, \sin u, 0)$. Then $\mathcal{S}_p(\mathbf{X}_u) = -\mathbf{N}_u = -(-\sin u, \cos u, 0) = -\mathbf{X}_u$. $\mathcal{S}_p(\mathbf{X}_v) = \mathbf{0}$.
- Let M be the hyperboloid $M = \{z = y^2 x^2\}$. We can parametrize it by $\mathbf{X}(u,v) = (u,v,v^2-u^2)$. Then $\mathbf{X}_u = (1,0,-2u), \mathbf{X}_v = (0,1,2v)$ and $\mathbf{N} = \frac{1}{(u^2+v^2+\frac{1}{4})^{\frac{1}{2}}}(u,-v,\frac{1}{2})$.

- Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u,v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0,0,1)$. We can take $\mathbf{N} = (\cos u, \sin u, 0)$. Then $\mathcal{S}_p(\mathbf{X}_u) = -\mathbf{N}_u = -(-\sin u, \cos u, 0) = -\mathbf{X}_u$. $\mathcal{S}_p(\mathbf{X}_v) = \mathbf{0}$.
- Let M be the hyperboloid $M = \{z = y^2 x^2\}$. We can parametrize it by $\mathbf{X}(u,v) = (u,v,v^2 u^2)$. Then $\mathbf{X}_u = (1,0,-2u), \mathbf{X}_v = (0,1,2v)$ and $\mathbf{N} = \frac{1}{(u^2+v^2+\frac{1}{4})^{\frac{1}{2}}}(u,-v,\frac{1}{2})$. At $p = (0,0,0) = \mathbf{X}(0,0)$, and if $\mathbf{X}(u(t),v(t))$ is a curve through p, then $\frac{d\mathbf{N}}{dt} = (2u',2v',0)$. So

- Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u,v) = (\cos u, \sin u, v)$. Then $\mathbf{X}_u = (-\sin u, \cos u, 0), \mathbf{X}_v = (0,0,1)$. We can take $\mathbf{N} = (\cos u, \sin u, 0)$. Then $\mathcal{S}_p(\mathbf{X}_u) = -\mathbf{N}_u = -(-\sin u, \cos u, 0) = -\mathbf{X}_u$. $\mathcal{S}_p(\mathbf{X}_v) = \mathbf{0}$.
- Let M be the hyperboloid $M = \{z = y^2 x^2\}$. We can parametrize it by $\mathbf{X}(u,v) = (u,v,v^2 u^2)$. Then $\mathbf{X}_u = (1,0,-2u), \mathbf{X}_v = (0,1,2v)$ and $\mathbf{N} = \frac{1}{(u^2+v^2+\frac{1}{4})^{\frac{1}{2}}}(u,-v,\frac{1}{2})$. At $p = (0,0,0) = \mathbf{X}(0,0)$, and if $\mathbf{X}(u(t),v(t))$ is a curve through p, then $\frac{d\mathbf{N}}{dt} = (2u',2v',0)$. So $\mathcal{S}_p(\mathbf{X}_u) = -(2,0,0), \mathcal{S}_p(\mathbf{X}_u) = (0,2,0)$.

The second fundamental form

Definition

Let S be the shape operator with respect to a unit normal vector field \mathbf{N} , the second fundamental form \mathbb{II}_p of M at p (with respect to \mathbf{N}) is the bilinear form $\mathbb{II}_p(\mathbf{v},\mathbf{w})=g(\mathcal{S}_p(\mathbf{v}),\mathbf{w})=\langle \mathcal{S}_p(\mathbf{v}),\mathbf{w}\rangle$.

Proposition

 \mathbb{II}_p is a symmetric bilinear form on $T_p(M)$.

Proof:

$$\mathbb{II}_{p}(\mathbf{v},\mathbf{w}) = \langle \mathcal{S}_{p}(\mathbf{v}),\mathbf{w}\rangle = \langle \mathbf{v},\mathcal{S}_{p}(\mathbf{w})\rangle = \mathbb{II}_{p}(\mathbf{w},\mathbf{v})$$

because S_p is self-adjoint.

Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let $\mathbf{N} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$.

Definition

The coefficients of the second fundamental form e, f, g at p are defined as:

$$e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u);$$

 $f = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_v);$
 $g = \mathbb{II}_p(\mathbf{X}_v, \mathbf{X}_v).$

Notation: Suppose we use (u^1, u^2) as coordinates, and $\mathbf{N} = \mathbf{X}_1 \times \mathbf{X}_2/|\mathbf{X}_1 \times \mathbf{X}_2|$, then the coefficients of the second fundamental form are denoted by

$$h_{11} = \mathbb{II}_{p}(\mathbf{X}_{1}, \mathbf{X}_{1}); h_{12} = \mathbb{II}_{p}(\mathbf{X}_{1}, \mathbf{X}_{2}) = h_{21}; h_{22} = \mathbb{II}_{p}(\mathbf{X}_{2}, \mathbf{X}_{2}).$$

Coefficients of the second fundamental form, cont.

$$S_p(\mathbf{X}_u) = -\frac{\partial}{\partial u}\mathbf{N} = -\mathbf{N}_u$$
. Hence

Coefficients of the second fundamental form, cont.

$$S_p(\mathbf{X}_u) = -\frac{\partial}{\partial u}\mathbf{N} = -\mathbf{N}_u$$
. Hence

$$e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathcal{S}_p(\mathbf{X}_u), \mathbf{X}_u \rangle = -\langle \mathbf{N}_u, \mathbf{X}_u \rangle = \langle \mathbf{N}, \mathbf{X}_{uu} \rangle.$$

Coefficients of the second fundamental form, cont.

$$\mathcal{S}_p(\mathbf{X}_u) = -\frac{\partial}{\partial u}\mathbf{N} = -\mathbf{N}_u$$
. Hence

$$e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathcal{S}_p(\mathbf{X}_u), \mathbf{X}_u \rangle = -\langle \mathbf{N}_u, \mathbf{X}_u \rangle = \langle \mathbf{N}, \mathbf{X}_{uu} \rangle.$$

Similarly,
$$f = \langle \mathbf{N}, \mathbf{X}_{uv} \rangle, g = \langle \mathbf{N}, \mathbf{X}_{vv} \rangle$$
.

To compute e, f, g

Proposition

$$e = \langle \mathbf{N}, \mathbf{X}_{uu} \rangle = \frac{\det (\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{uu})}{\sqrt{EG - F^{2}}}$$

$$f = \langle \mathbf{N}, \mathbf{X}_{uv} \rangle = \frac{\det (\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{uv})}{\sqrt{EG - F^{2}}};$$

$$g = \langle \mathbf{N}, \mathbf{X}_{vv} \rangle = \frac{\det (\mathbf{X}_{u}, \mathbf{X}_{v}, \mathbf{X}_{vv})}{\sqrt{EG - F^{2}}}.$$

Consider the torus:

$$\mathbf{X}(u,v) = ((a+r\cos u)\cos v, (a+r\cos u)\sin v, r\sin u).$$
 Then

$$\left\{ \begin{array}{l} \mathbf{X}_u = (-r\sin u\cos v, -r\sin u\sin v, r\cos u) \\ \mathbf{X}_v = (-(a+r\cos u)\sin v, (a+r\cos u)\cos v, 0) \\ \mathbf{X}_{uu} = (-r\cos u\cos v, -r\cos u\sin v, -r\sin u) \\ \mathbf{X}_{uv} = (r\sin u\sin v, -\sin u\cos v, 0) \\ \mathbf{X}_{vv} = (-(a+r\cos u)\cos v, -(a+r\cos u)\sin v, 0) \end{array} \right.$$

Consider the torus:

Consider the torus:
$$\mathbf{X}(u,v) = ((a+r\cos u)\cos v, (a+r\cos u)\sin v, r\sin u). \text{ Then}$$

$$\begin{cases}
\mathbf{X}_u = (-r\sin u\cos v, -r\sin u\sin v, r\cos u) \\
\mathbf{X}_v = (-(a+r\cos u)\sin v, (a+r\cos u)\cos v, 0) \\
\mathbf{X}_{uu} = (-r\cos u\cos v, -r\cos u\sin v, -r\sin u) \\
\mathbf{X}_{uv} = (r\sin u\sin v, -\sin u\cos v, 0) \\
\mathbf{X}_{vv} = (-(a+r\cos u)\cos v, -(a+r\cos u)\sin v, 0)
\end{cases}$$
So $E = r^2, F = 0, G = (a+r\cos u)^2.$

Consider the torus:

Consider the torus:
$$\mathbf{X}(u,v) = ((a+r\cos u)\cos v, (a+r\cos u)\sin v, r\sin u). \text{ Then}$$

$$\begin{cases} \mathbf{X}_u = (-r\sin u\cos v, -r\sin u\sin v, r\cos u) \\ \mathbf{X}_v = (-(a+r\cos u)\sin v, (a+r\cos u)\cos v, 0) \\ \mathbf{X}_{uu} = (-r\cos u\cos v, -r\cos u\sin v, -r\sin u) \\ \mathbf{X}_{uv} = (r\sin u\sin v, -\sin u\cos v, 0) \\ \mathbf{X}_{vv} = (-(a+r\cos u)\cos v, -(a+r\cos u)\sin v, 0) \end{cases}$$
 So
$$E = r^2, F = 0, G = (a+r\cos u)^2.$$

$$e = \det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu})/r(a+r\cos u) = r.$$

$$f = 0, g = \cos u(a+r\cos u).$$

• Recall: suppose V^2 is vector space V^2 . Let $\beta = \{\mathbf{e}_1, \mathbf{e}_2\}$ be an *ordered* basis for V_2 . Let $\mathbf{v} \in V^2$, then $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2$. Then $[c_1, c_2]^T$ as a column vector if called the coordinates of \mathbf{v} w.r.t. β , denoted by $[\mathbf{v}]_{\beta}$.

- Recall: suppose V^2 is vector space V^2 . Let $\beta = \{\mathbf{e}_1, \mathbf{e}_2\}$ be an *ordered* basis for V_2 . Let $\mathbf{v} \in V^2$, then $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2$. Then $[c_1, c_2]^T$ as a column vector if called the coordinates of \mathbf{v} w.r.t. β , denoted by $[\mathbf{v}]_{\beta}$.
- Let T be a linear map on V^2 . Then $T(\mathbf{e}_i) = \sum_{j=1}^2 a_i^j \mathbf{e}_j$. Then the matrix of T w.r.t. β is $[T]_{\beta} = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}$.

- Recall: suppose V^2 is vector space V^2 . Let $\beta = \{\mathbf{e}_1, \mathbf{e}_2\}$ be an *ordered* basis for V_2 . Let $\mathbf{v} \in V^2$, then $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2$. Then $[c_1, c_2]^T$ as a column vector if called the coordinates of \mathbf{v} w.r.t. β , denoted by $[\mathbf{v}]_{\beta}$.
- Let T be a linear map on V^2 . Then $T(\mathbf{e}_i) = \sum_{j=1}^2 a_j^j \mathbf{e}_j$. Then the matrix of T w.r.t. β is $[T]_{\beta} = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}$.
- We have $[T(\mathbf{v})]_{\beta} = [T]_{\beta}[\mathbf{v}]_{\beta}$. E.g.

$$[T(\mathbf{e}_1)]_{\beta} = \left(egin{array}{cc} a_1^1 & a_2^1 \ a_1^2 & a_2^2 \end{array}
ight) \left(egin{array}{cc} 1 \ 0 \end{array}
ight) = \left(egin{array}{c} a_1^1 \ a_1^2 \end{array}
ight).$$

- Recall: suppose V^2 is vector space V^2 . Let $\beta = \{\mathbf{e}_1, \mathbf{e}_2\}$ be an *ordered* basis for V_2 . Let $\mathbf{v} \in V^2$, then $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2$. Then $[c_1, c_2]^T$ as a column vector if called the coordinates of \mathbf{v} w.r.t. β , denoted by $[\mathbf{v}]_{\beta}$.
- Let T be a linear map on V^2 . Then $T(\mathbf{e}_i) = \sum_{j=1}^2 a_j^j \mathbf{e}_j$. Then the matrix of T w.r.t. β is $[T]_{\beta} = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}$.
- We have $[T(\mathbf{v})]_{\beta} = [T]_{\beta}[\mathbf{v}]_{\beta}$. E.g.

$$[T(\mathbf{e}_1)]_{\beta} = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1^1 \\ a_1^2 \end{pmatrix}.$$

• There are two invariants of T: its determinant and its trace. They are independent of the ordered basis chosen.

Suppose $S_p(\mathbf{X}_u) = a_1^1 \mathbf{X}_u + a_1^2 \mathbf{X}_v$, $S_p(\mathbf{X}_v) = a_2^1 \mathbf{X}_u + a_2^2 \mathbf{X}_v$. Then the matrix of S_p with respect to the ordered basis $\beta = \{\mathbf{X}_u, \mathbf{X}_v\}$ is given by

$$[\mathcal{S}_p]_{eta} = \left(egin{array}{cc} a_1^1 & a_2^1 \ a_1^2 & a_2^2 \end{array}
ight)$$

Definition

The Gaussian curvature K(p) of M at p is the determinant of S_p . The mean curvature H(p) of M at p is $1/2 \times$ the trace of S_p .

Proposition

Let

$$\left(\begin{array}{cc}a_1^1&a_2^1\\a_1^2&a_2^2\end{array}\right)$$

be the matrix of S_p with respect to the ordered basis $\{X_u, X_v\}$. Then

$$\left(\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array}\right) = \left(\begin{array}{cc} e & f \\ f & g \end{array}\right) \left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1}.$$

② The Gaussian curvature K(p) and the mean curvature H(p) of M at p are given by

$$K(p) = \frac{eg - f^2}{EG - F^2},$$

and

$$H(p) = \frac{1}{2} \frac{eG - 2fF + gE}{FG - F^2}.$$

If we use coordinates (u^1, u^2) and coefficients of the first and second fundamental forms are g_{ij} , h_{ij} , then

$$\left(\begin{array}{cc} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{array}\right) = (h_{ij}) \times (g_{ij})^{-1}.$$

$$K(p) = \frac{h_{11}h_{22} - h_{12}^2}{g_{11}g_{22} - g_{12}^2} = \frac{\det(h_{ij})}{\det(g_{ij})},$$

and

$$H(p) = \frac{1}{2} \frac{h_{11}g_{22} - 2h_{12}g_{12} + h_{22}g_{11}}{g_{11}g_{22} - g_{12}^2} = \frac{1}{2} \sum_{i,j} h_{ij}g^{ij}.$$

where $(g^{ij}) = (g_{ij})^{-1}$.

Two remarks

Remark:

• Gaussian curvature is invariant under reparametrization.

Two remarks

Remark:

- Gaussian curvature is invariant under reparametrization.
- Mean curvature is invariant under orientation preserving reparametrization.

Proof:

It is more easy to use parametrization of the form $\mathbf{X}(u^1,u^2)$. Denote $\mathbf{X}_1 = \mathbf{e}_1$, $\mathbf{X}_2 = \mathbf{e}_2$. If the matrix of \mathcal{S}_p w.r.t. this ordered basis β is given above. Then

Proof:

It is more easy to use parametrization of the form $\mathbf{X}(u^1,u^2)$. Denote $\mathbf{X}_1 = \mathbf{e}_1$, $\mathbf{X}_2 = \mathbf{e}_2$. If the matrix of \mathcal{S}_p w.r.t. this ordered basis β is given above. Then $\mathcal{S}_p(\mathbf{e}_i) = \sum_{i=1}^2 a_i^j \mathbf{e}_i$.

Proof:

It is more easy to use parametrization of the form $\mathbf{X}(u^1,u^2)$. Denote $\mathbf{X}_1 = \mathbf{e}_1$, $\mathbf{X}_2 = \mathbf{e}_2$. If the matrix of \mathcal{S}_p w.r.t. this ordered basis β is given above. Then $\mathcal{S}_p(\mathbf{e}_i) = \sum_{j=1}^2 a_i^j \mathbf{e}_j.$ Let $g_{ii} = \langle e_i, e_i \rangle$

Proof:

It is more easy to use parametrization of the form $\mathbf{X}(u^1,u^2)$. Denote $\mathbf{X}_1 = \mathbf{e}_1$, $\mathbf{X}_2 = \mathbf{e}_2$. If the matrix of \mathcal{S}_p w.r.t. this ordered basis β is given above. Then

$$\mathcal{S}_p(\mathbf{e}_i) = \sum_{j=1}^2 a_i^j \mathbf{e}_j.$$

Let $g_{ij} = \langle e_i, e_j \rangle$
Now $h_{ij} = \langle \mathcal{S}_p(\mathbf{e}_i), \mathbf{e}_j \rangle = \langle \sum_k a_i^k \mathbf{e}_k, \mathbf{e}_j \rangle = \sum_k a_i^k g_{jk}.$ Hence $[h_{ij}] = [\mathcal{S}]_\beta[g_{ij}].$ So

$$[\mathcal{S}]_{\beta} = [h_{ij}][g_{ij}]^{-1}.$$

• Let M be a plane. We know that $S_p = 0$ everywhere. So the Gaussian curvature is 0, the mean curvature is zero.

- Let M be a plane. We know that $S_p = 0$ everywhere. So the Gaussian curvature is 0, the mean curvature is zero.
- Let M be the unit sphere. If we choose ${\bf N}$ as before, then ${\cal S}$ is negative of the identity. So Gaussian curvature is 1 and mean curvature is -1.

- Let M be a plane. We know that $S_p = 0$ everywhere. So the Gaussian curvature is 0, the mean curvature is zero.
- Let M be the unit sphere. If we choose ${\bf N}$ as before, then ${\cal S}$ is negative of the identity. So Gaussian curvature is 1 and mean curvature is -1.
- For the torus, and the choice of normal vector as before, we have $E = r^2$, F = 0, $G = (a + r \cos u)^2$. $e = \det(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu})/r(a + r \cos u) = r$. f = 0, $g = \cos u(a + r \cos u)$. Hence

$$K = \frac{\cos u}{r(a + r\cos u)}.$$

So K>0 for $-\frac{3}{2}\pi< u<\frac{1}{2}\pi$, K=0 on $u=\frac{1}{2}\pi,-\frac{3}{2}\pi$, K<0 for $\frac{1}{2}\pi< u<\frac{3}{2}\pi$.