Important Notice:

♣ The answer paper must be submitted before 06 Nov 2020 at 12 noon.

♠ The answer paper MUST BE sent to the CU Blackboard.

z The answer paper must include your name and student ID.

Answer ALL Questions

1. (20 points)

You can refer to Example 3.18 in the Lecture Note (2 Nov version) for answering this question.

Let (c_k) be a sequence of real numbers.

(i) Show that for each $m \in \mathbb{N}$, there is a bounded variation g_m on [0, 1] so that

$$
\int_0^1 x^k dg_m(x) = c_k \tag{1}
$$

for all $k = 0, 1, ..., m$.

(Hint: By applying the Hahn-Banach Theorem and considering a subspace F of $C[0, 1]$ spanned by $\{x^k : k = 0, 1, ..., m\}.$

(ii) Show that there is $C > 0$ such that

$$
|\sum_{k=0}^{m} a_k c_k| \le C \max\{|\sum_{k=0}^{m} a_k x^k| : x \in [0,1]\}
$$

for any real sequence (a_k) and for all $m = 0, 1, 2, ...$ if and only if there is a bounded variation $\phi : [0, 1] \to \mathbb{R}$ such that the Eq 1 above holds for all $k = 0, 1, 2, \dots$.

Answer:

(i): Fix a positive integer m. Let F be a subspace of $C[0,1]$ spanned by $\{x^k : k =$ $[0, 1, ..., m]$. Note that $\{x^k : k = 0, 1, ..., m\}$ is a linearly independent set. Thus, we can define a linear functional $f : F \to \mathbb{R}$ satisfying $f(x_k) = c_k$ for all $k = 0, 1, ..., m$. F is of finite dimension, so f is bounded. By using the Hahn-Banach Theorem, there is a bounded linear extension T of f defined on $C[0,1]$. Since $C[0,1]^*$ is the space of all bounded variations on [0, 1], there is a bounded variation g_m on [0, 1] such that

$$
T(\xi) = \int_0^1 \xi(x) dg_m(x)
$$

for all $\xi \in C[0,1]$. In particular, we have

$$
\int_0^1 x^k dg_m(x) = c_k
$$

for all $k = 0, 1, \ldots, m$ as desired.

(ii): Let X be a subspace of $C[0,1]$ spanned by the set $\{x^k : k = 0,1,2...\}$. As ${x^k : k = 0, 1, 2...}$ is a linearly independent set, we define a linear functional h on X such that $h(x^k) = c_k$ for all $k = 0, 1, 2...$ We first claim that h is bounded on X. In fact, by the assumption, we have

$$
|h(\xi)| \le C \|\xi\|_{\infty}
$$

for all $\xi \in X$, hence $h \in X^*$. By using the Hahn-Banach Theorem again, there is a bounded linear extension $H \in C[0,1]^*$ of h. Therefore, by using the fact that the dual space $C[0,1]^*$ is the space of all bounded variations on $[0,1]$, there is a bounded variation ϕ on [0, 1] such that

$$
\int_0^1 x^k d\phi(x) = H(x^k) = h(x^k) = c_k
$$

for all $k = 0, 1, 2...$

2. (20 points)

Let $\{Q_i\}_{i\in I}$ be a family of uniform bounded projections on a Banach space X, i.e., there is $C > 0$ such that $||Q_i|| \leq C$ for all $i \in I$. Let $X_i := Q_i(X)$.

Suppose that the union $\bigcup_{i\in I} X_i$ is dense in X and for any pair $i_1, i_2 \in I$, there is $i_3 \in I$ such that $X_{i_1} \cup X_{i_2} \subseteq X_{i_3}$.

- (i) Show that for every $\varepsilon > 0$ and for every finite subset A of X, there is $i \in I$ such that $\sup_{x \in A} ||x - Q_i x|| < \varepsilon$.
- (ii) Assume that the *n*-dimensional finite sequence space $\ell_p^{(n)}$ is a closed subspace of X, where $1 \leq p \leq \infty$ (see Example 1.2 in Lecture Note). Show that for any $\varepsilon > 0$, there exist a subspace F_i of X_i for some $i \in I$ and a linear isomorphism T_i from $\ell_p^{(n)}$ onto F_i such that $||T_i|| ||T_i^{-1}$ $\| \xi_i^{-1} \| < 1 + \varepsilon.$

Answer:

(i): Let $\varepsilon > 0$. Since the union $\bigcup_{i \in I} X_i$ is dense in X, for each element $a \in A$, we can find $x_{i_a} \in X_{i_a}$ for some $i_a \in I$ such that $||x_{i_a} - a|| < \varepsilon$. A is finite, by the assumption of X_i 's, so there is $i \in I$ such that $x_{i_a} \in X_i$ for all $a \in A$. Then $Q_i(x_{i_a}) = x_{i_a}$ for all $a \in A$. Therefore, we have

$$
||Q_i a - a|| \le ||Q_i a - Q_i x_{i_a}|| + ||x_{i_a} - a|| \le (1 + C)\varepsilon
$$

for all $a \in A$. The result follows.

(ii): Let $\eta > 0$. Let $(e_k)_{k=1}^n$ be the natural base of ℓ_p^n . Then by Part (i) , there is Q_i such that $||Q_i e_k - e_k|| < \frac{\eta}{n}$ $\frac{n}{n}$ for $k = 1, ..., n$. Define a linear map $T: \ell_p^{(n)} \to X_i$ by $T(e_k) := Q_i e_k$ for $k = 1, 2, ..., n$. Note that if $x = \sum_{k=1}^{n} a_k e_k \in \ell_p^n \subseteq X$, we have $|a_k| \le ||x||_p = ||x||$ for all $k = 1, ..., n$. Thus we have

$$
||Tx|| = ||T(\sum_{k=1}^{n} a_k e_k)|| \le ||\sum_{k=1}^{n} a_k (Te_k - e_k)|| + ||\sum_{k=1}^{n} a_k e_k||
$$

$$
\le \sum_{k=1}^{n} |a_k| ||Q_i e_k - e_k|| + ||x||
$$

$$
\le ||x||\eta + ||x|| = (1 + \eta) ||x||.
$$

Hence, $||T|| \leq 1 + \eta$.

On the other hand, for $x = \sum_{k=1}^{n} a_k e_k \in \ell_p^n$, we have

$$
||x|| = || \sum_{k=1}^{n} a_k e_k ||
$$

\n
$$
\leq || \sum_{k=1}^{n} a_k (e_k - Q_i e_k) || + || \sum_{k=1}^{n} a_k Q_i e_k ||
$$

\n
$$
\leq \sum_{k=1}^{n} |a_k| \frac{\eta}{n} + ||T(\sum_{k=1}^{n} a_k e_k) ||
$$

\n
$$
\leq \eta ||x|| + ||Tx||.
$$

Therefore, we have

$$
(1 - \eta) \|x\| \le \|Tx\|
$$

for all $x \in \ell_p^{(n)}$. Thus, if $1 - \eta > 0$, then $||T^{-1}|| \le \frac{1}{1-\eta}$. Therefore, T is an isomorphism from ℓ_p^n onto a subspace F_i of X_i for some $i \in I$. Moreover, we have $||T|| ||T^{-1}|| \leq \frac{1+\eta}{1-\eta}$. Note that $\frac{1+\eta}{1-\eta} \to 1$ as $\eta \to 0$ +. Therefore, for any $\varepsilon > 0$, we can choose $0 < \eta < \xi$, so that $1 < \frac{1+\eta}{1-\eta}$ $\frac{1+\eta}{1-\eta} < 1+\varepsilon$. Then the proof is complete.

∗ ∗ ∗ END OF PAPER ∗ ∗ ∗